Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Rep ; 42(3): 112200, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36867532

RESUMEN

Thalamoreticular circuitry plays a key role in arousal, attention, cognition, and sleep spindles, and is linked to several brain disorders. A detailed computational model of mouse somatosensory thalamus and thalamic reticular nucleus has been developed to capture the properties of over 14,000 neurons connected by 6 million synapses. The model recreates the biological connectivity of these neurons, and simulations of the model reproduce multiple experimental findings in different brain states. The model shows that inhibitory rebound produces frequency-selective enhancement of thalamic responses during wakefulness. We find that thalamic interactions are responsible for the characteristic waxing and waning of spindle oscillations. In addition, we find that changes in thalamic excitability control spindle frequency and their incidence. The model is made openly available to provide a new tool for studying the function and dysfunction of the thalamoreticular circuitry in various brain states.


Asunto(s)
Tálamo , Vigilia , Ratones , Animales , Tálamo/fisiología , Sueño/fisiología , Núcleos Talámicos/fisiología , Percepción , Corteza Cerebral/fisiología
2.
Nat Commun ; 10(1): 3792, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31439838

RESUMEN

Typical responses of cortical neurons to identical sensory stimuli appear highly variable. It has thus been proposed that the cortex primarily uses a rate code. However, other studies have argued for spike-time coding under certain conditions. The potential role of spike-time coding is directly limited by the internally generated variability of cortical circuits, which remains largely unexplored. Here, we quantify this internally generated variability using a biophysical model of rat neocortical microcircuitry with biologically realistic noise sources. We find that stochastic neurotransmitter release is a critical component of internally generated variability, causing rapidly diverging, chaotic recurrent network dynamics. Surprisingly, the same nonlinear recurrent network dynamics can transiently overcome the chaos in response to weak feed-forward thalamocortical inputs, and support reliable spike times with millisecond precision. Our model shows that the noisy and chaotic network dynamics of recurrent cortical microcircuitry are compatible with stimulus-evoked, millisecond spike-time reliability, resolving a long-standing debate.


Asunto(s)
Corteza Cerebral/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Tálamo/fisiología , Potenciales de Acción/fisiología , Animales , Corteza Cerebral/citología , Red Nerviosa/citología , Neurotransmisores/metabolismo , Dinámicas no Lineales , Ratas , Reproducibilidad de los Resultados , Potenciales Sinápticos/fisiología , Tálamo/citología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA