Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Paediatr Child Health ; 57(4): 477-483, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33566436

RESUMEN

Genomic testing for a genetic diagnosis is becoming standard of care for many children, especially those with a syndromal intellectual disability. While previously this type of specialised testing was performed mainly by clinical genetics teams, it is increasingly being 'mainstreamed' into standard paediatric care. With the introduction of a new Medicare rebate for genomic testing in May 2020, this type of testing is now available for paediatricians to order, in consultation with clinical genetics. Children must be aged less than 10 years with facial dysmorphism and multiple congenital abnormalities or have global developmental delay or moderate to severe intellectual disability. This rebate should increase the likelihood of a genetic diagnosis, with accompanying benefits for patient management, reproductive planning and diagnostic certainty. Similar to the introduction of chromosomal microarray into mainstream paediatrics, this genomic testing will increase the number of genetic diagnoses, however, will also yield more variants of uncertain significance, incidental findings, and negative results. This paper aims to guide paediatricians through the process of genomic testing, and represents the combined expertise of educators, clinical geneticists, paediatricians and genomic pathologists around Australia. Its purpose is to help paediatricians navigate choosing the right genomic test, consenting patients and understanding the possible outcomes of testing.


Asunto(s)
Discapacidad Intelectual , Pediatría , Anciano , Australia , Niño , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Pruebas Genéticas , Genómica , Humanos , Discapacidad Intelectual/genética , Programas Nacionales de Salud
2.
JAMA ; 323(24): 2503-2511, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32573669

RESUMEN

Importance: Widespread adoption of rapid genomic testing in pediatric critical care requires robust clinical and laboratory pathways that provide equitable and consistent service across health care systems. Objective: To prospectively evaluate the performance of a multicenter network for ultra-rapid genomic diagnosis in a public health care system. Design, Setting, and Participants: Descriptive feasibility study of critically ill pediatric patients with suspected monogenic conditions treated at 12 Australian hospitals between March 2018 and February 2019, with data collected to May 2019. A formal implementation strategy emphasizing communication and feedback, standardized processes, coordination, distributed leadership, and collective learning was used to facilitate adoption. Exposures: Ultra-rapid exome sequencing. Main Outcomes and Measures: The primary outcome was time from sample receipt to ultra-rapid exome sequencing report. The secondary outcomes were the molecular diagnostic yield, the change in clinical management after the ultra-rapid exome sequencing report, the time from hospital admission to the laboratory report, and the proportion of laboratory reports returned prior to death or hospital discharge. Results: The study population included 108 patients with a median age of 28 days (range, 0 days to 17 years); 34% were female; and 57% were from neonatal intensive care units, 33% were from pediatric intensive care units, and 9% were from other hospital wards. The mean time from sample receipt to ultra-rapid exome sequencing report was 3.3 days (95% CI, 3.2-3.5 days) and the median time was 3 days (range, 2-7 days). The mean time from hospital admission to ultra-rapid exome sequencing report was 17.5 days (95% CI, 14.6-21.1 days) and 93 reports (86%) were issued prior to death or hospital discharge. A molecular diagnosis was established in 55 patients (51%). Eleven diagnoses (20%) resulted from using the following approaches to augment standard exome sequencing analysis: mitochondrial genome sequencing analysis, exome sequencing-based copy number analysis, use of international databases to identify novel gene-disease associations, and additional phenotyping and RNA analysis. In 42 of 55 patients (76%) with a molecular diagnosis and 6 of 53 patients (11%) without a molecular diagnosis, the ultra-rapid exome sequencing result was considered as having influenced clinical management. Targeted treatments were initiated in 12 patients (11%), treatment was redirected toward palliative care in 14 patients (13%), and surveillance for specific complications was initiated in 19 patients (18%). Conclusions and Relevance: This study suggests feasibility of ultra-rapid genomic testing in critically ill pediatric patients with suspected monogenic conditions in the Australian public health care system. However, further research is needed to understand the clinical value of such testing, and the generalizability of the findings to other health care settings.


Asunto(s)
Enfermedad Crítica , Secuenciación del Exoma/métodos , Enfermedades Genéticas Congénitas/genética , Pruebas Genéticas/métodos , Australia , Niño , Preescolar , Estudios de Factibilidad , Femenino , Enfermedades Genéticas Congénitas/diagnóstico , Humanos , Lactante , Recién Nacido , Masculino , Programas Nacionales de Salud , Estudios Prospectivos , Factores de Tiempo
3.
Med J Aust ; 197(3): 155-9, 2012 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-22860792

RESUMEN

About 80% of congenital heart disease (CHD) is multifactorial and arises through various combinations of genetic and environmental contributors. About 20% of cases can be attributed to chromosomal anomalies, Mendelian syndromes, non-syndromal single gene disorders or teratogens. Down syndrome and velocardiofacial syndrome are the most commonly seen syndromes in patients with CHD. To date, more than 30 genes have been linked to non-syndromal forms of CHD. Their contribution to CHD remains unknown but is presumed to be relatively small. There is limited evidence for the contribution of specific environmental factors to CHD causation. However, folic acid supplementation in the pre- and peri-conception period, ensuring rubella vaccination has been completed before pregnancy, and maintaining good glycaemic control in mothers with diabetes may reduce the risk of CHD in infants. Recurrence risks vary between different types of non-syndromal CHD with multifactorial inheritance, and can be as high as 10% when two or more siblings are affected. Generally, the recurrence risk increases if a parent rather than a sibling is affected, particularly when the affected parent is the mother. Individualised recurrence risks can be generated for members of families affected by CHD after obtaining a detailed family history, including accurate cardiac diagnoses for all affected members. High-throughput genetic techniques can accelerate gene discovery and improve our ability to provide individualised genetic counselling.


Asunto(s)
Cardiopatías Congénitas/etiología , Aberraciones Cromosómicas , Ambiente , Enfermedades Genéticas Congénitas/genética , Cardiopatías Congénitas/genética , Humanos , Factores de Riesgo , Teratógenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA