Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ALTEX ; 39(3): 388­404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35288757

RESUMEN

The application of in vitro biological assays as new approach methodologies (NAMs) to support grouping of UVCB (unknown or variable composition, complex reaction products, and biological materials) substances has recently been demonstrated. In addition to cell-based phenotyping as NAMs, in vitro transcriptomic profiling is used to gain deeper mechanistic understanding of biological responses to chemicals and to support grouping and read-across. However, the value of gene expression profiling for characterizing complex substances like UVCBs has not been explored. Using 141 petroleum substance extracts, we performed dose-response transcriptomic profiling in human induced pluripotent stem cell (iPSC)-derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, as well as cell lines MCF7 and A375. The goal was to determine whether transcriptomic data can be used to group these UVCBs and to further characterize the molecular basis for in vitro biological responses. We found distinct transcriptional responses for petroleum substances by manufacturing class. Pathway enrichment informed interpretation of effects of substances and UVCB petroleum-class. Transcriptional activity was strongly correlated with concentration of polycyclic aromatic compounds (PAC), especially in iPSC-derived hepatocytes. Supervised analysis using transcriptomics, alone or in combination with bioactivity data collected on these same substances/cells, suggest that transcriptomics data provide useful mechanistic information, but only modest additional value for grouping. Overall, these results further demonstrate the value of NAMs for grouping of UVCBs, identify informative cell lines, and provide data that could be used for justifying selection of substances for further testing that may be required for registration.


Asunto(s)
Células Madre Pluripotentes Inducidas , Petróleo , Bioensayo , Células Endoteliales , Humanos , Transcriptoma
2.
ALTEX ; 38(1): 123-137, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33086383

RESUMEN

One of the most challenging areas in regulatory science is assessment of the substances known as UVCB (unknown or variable composition, complex reaction products and biological materials). Because the inherent complexity and variability of UVCBs present considerable challenges for establishing sufficient substance similarity based on chemical characteristics or other data, we hypothesized that new approach methodologies (NAMs), including in vitro test-derived biological activity signatures to characterize substance similarity, could be used to support grouping of UVCBs. We tested 141 petroleum substances as representative UVCBs in a compendium of 15 human cell types representing a variety of tissues. Petroleum substances were assayed in dilution series to derive point of departure estimates for each cell type and phenotype. Extensive quality control measures were taken to ensure that only high-confidence in vitro data were used to determine whether current groupings of these petroleum substances, based largely on the manufacturing process and physico-chemical properties, are justifiable. We found that bioactivity data-based groupings of petroleum substances were generally consistent with the manufacturing class-based categories. We also showed that these data, especially bioactivity from human induced pluripotent stem cell (iPSC)-derived and primary cells, can be used to rank substances in a manner highly concordant with their expected in vivo hazard potential based on their chemical compositional profile. Overall, this study demonstrates that NAMs can be used to inform groupings of UVCBs, to assist in identification of repre­sentative substances in each group for testing when needed, and to fill data gaps by read-across.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Sustancias Peligrosas/química , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Petróleo/análisis , Petróleo/toxicidad , Pruebas de Toxicidad/métodos , Sustancias Peligrosas/toxicidad , Humanos
3.
Assay Drug Dev Technol ; 16(6): 333-342, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30070899

RESUMEN

Skeletal muscle-associated toxicity is an underresearched area in the field of high-throughput toxicity screening; hence, the potential adverse effects of drugs and chemicals on skeletal muscle are largely unknown. Novel organotypic microphysiological in vitro models are being developed to replicate the contractile function of skeletal muscle; however, the throughput and a need for specialized equipment may limit the utility of these tissue chip models for screening. In addition, recent developments in stem cell biology have resulted in the generation of induced pluripotent stem cell (iPSC)-derived skeletal myoblasts that enable high-throughput in vitro screening. This study set out to develop a high-throughput multiplexed assay using iPSC-derived skeletal myoblasts that can be used as a first-pass screen to assess the potential for chemicals to affect skeletal muscle. We found that cytotoxicity and cytoskeletal integrity are most useful and reproducible assays for the skeletal myoblasts when evaluating overall cellular health or gauging disruptions in actin polymerization following 24 h of exposure. Both assays are based on high-content imaging and quantitative image processing to derive quantitative phenotypes. Both assays showed good to excellent assay robustness and reproducibility measured by interplate and interday replicability, coefficients of variation of negative controls, and Z'-factors for positive control chemicals. Concentration response assessment of muscle-related toxicants showed specificity of the observed effects compared to the general cytotoxicity. Overall, this study establishes a high-throughput multiplexed assay using skeletal myoblasts that may be used for screening and prioritization of chemicals for more complex tissue chip-based and in vivo evaluation.


Asunto(s)
Citocalasina B/farmacología , Doxorrubicina/farmacología , Ensayos Analíticos de Alto Rendimiento , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología , Células Cultivadas , Citocalasina B/efectos adversos , Citocalasina B/química , Relación Dosis-Respuesta a Droga , Doxorrubicina/efectos adversos , Doxorrubicina/química , Evaluación Preclínica de Medicamentos , Humanos , Compuestos de Amonio Cuaternario/efectos adversos , Compuestos de Amonio Cuaternario/química , Relación Estructura-Actividad
4.
Assay Drug Dev Technol ; 15(6): 267-279, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28771372

RESUMEN

Endothelial cells (ECs) play a major role in blood vessel formation and function. While there is longstanding evidence for the potential of chemical exposures to adversely affect EC function and vascular development, the hazard potential of chemicals with respect to vascular effects is not routinely evaluated in safety assessments. Induced pluripotent stem cell (iPSC)-derived ECs promise to provide a physiologically relevant, organotypic culture model that is amenable for high-throughput (HT) EC toxicant screening and may represent a viable alternative to traditional in vitro models, including human umbilical vein endothelial cells (HUVECs). To evaluate the utility of iPSC-ECs for multidimensional HT toxicity profiling of chemicals, both iPSC-ECs and HUVECs were exposed to selected positive (angiogenesis inhibitors, cytotoxic agents) and negative compounds in concentration response for either 16 or 24 h in a 384-well plate format. Furthermore, chemical effects on vascularization were quantified using EC angiogenesis on biological (Geltrex™) and synthetic (SP-105 angiogenesis hydrogel) extracellular matrices. Cellular toxicity was assessed using high-content live cell imaging and the CellTiter-Glo® assay. Assay performance indicated good to excellent assay sensitivity and reproducibility for both cell types investigated. Both iPSC-derived ECs and HUVECs formed tube-like structures on Geltrex™ and hydrogel, an effect that was inhibited by angiogenesis inhibitors and cytotoxic agents in a concentration-dependent manner. The quality of HT assays in HUVECs was generally higher than that in iPSC-ECs. Altogether, this study demonstrates the capability of ECs for comprehensive assessment of the biological effects of chemicals on vasculature in a HT compatible format.


Asunto(s)
Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Células Endoteliales de la Vena Umbilical Humana/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Pruebas de Toxicidad , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Imagenología Tridimensional , Relación Estructura-Actividad
5.
Chem Res Toxicol ; 29(5): 851-9, 2016 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-26967026

RESUMEN

Hepatic levels of the essential micronutrient, zinc, are diminished by several hepatotoxicants, and the dietary supplementation of zinc has proven protective in those cases. 3,3',4,4',5-Pentachlorobiphenyl (PCB126), a liver toxicant, alters hepatic nutrient homeostasis and lowers hepatic zinc levels. The current study was designed to determine the mitigative potential of dietary zinc in the toxicity associated with PCB126 and the role of zinc in that toxicity. Male Sprague-Dawley rats were divided into three dietary groups and fed diets deficient in zinc (7 ppm Zn), adequate in zinc (30 ppm Zn), and supplemented in zinc (300 ppm). The animals were maintained for 3 weeks on these diets, then given a single IP injection of vehicle or 1 or 5 µmol/kg PCB126. After 2 weeks, the animals were euthanized. Dietary zinc increased the level of ROS, the activity of CuZnSOD, and the expression of metallothionein but decreased the levels of hepatic manganese. PCB126 exposed rats exhibited classic signs of exposure, including hepatomegaly, increased hepatic lipids, increased ROS and CYP induction. Liver histology suggests some mild ameliorative properties of both zinc deficiency and zinc supplementation. Other metrics of toxicity (relative liver and thymus weights, hepatic lipids, and hepatic ROS) did not support this trend. Interestingly, the zinc supplemented high dose PCB126 group had mildly improved histology and less efficacious induction of investigated genes than did the low dose PCB126 group. Overall, decreases in zinc caused by PCB126 likely contribute little to the ongoing toxicity, and the mitigative/preventive capacity of zinc against PCB126 exposure seems limited.


Asunto(s)
Dieta , Hígado/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Zinc/farmacología , Animales , Conducta Alimentaria , Expresión Génica , Masculino , Metalotioneína/genética , Estrés Oxidativo , Ratas , Receptores de Hidrocarburo de Aril/metabolismo , Superóxido Dismutasa/metabolismo , Zinc/administración & dosificación
6.
Chem Res Toxicol ; 26(5): 634-44, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23527585

RESUMEN

Copper is essential for the function of the mitochondrial electron transport chain and several antioxidant proteins. However, in its free form copper can participate in Fenton-like reactions that produce reactive hydroxyl radicals. Aryl-hydrocarbon receptor (AhR) agonists, including the most potent polychlorinated biphenyl (PCB) congener, 3,3',4,4',5-pentachlorobiphenyl (PCB126), increase copper levels in rodent livers. This is accompanied by biochemical and toxic changes. To assess the involvement of copper in PCB toxicity, male Sprague-Dawley rats were fed an AIN-93G diet with differing dietary copper levels: low (2 ppm), adequate (6 ppm), and high (10 ppm). After three weeks, rats from each group were given a single ip injection of corn oil (control), 1, or 5 µmol/kg body weight PCB126. Two weeks following injections, biochemical and morphological markers of hepatic toxicity, trace metal status, and hepatic gene expression of metalloproteins were evaluated. Increasing dietary copper was associated with elevated tissue levels of copper and ceruloplasmin. In the livers of PCB126-treated rats, the hallmark signs of AhR activation were present, including increased cytochrome P450 and lipid levels and decreased glutathione. In addition, a doubling of hepatic copper levels was seen, and overall metal homeostasis was disturbed, resulting in decreased hepatic selenium, manganese, zinc, and iron. Expression of key metalloproteins was either decreased (cytochrome c oxidase), unchanged (ceruloplasmin and CuZnSOD), or increased (tyrosinase and metallothioneins 1 and 2) with exposure to PCB126. Increases in metallothionein may contribute/reflect the increased copper seen. Alterations in dietary copper did not amplify or abrogate the hepatic toxicity of PCB126. PCB126 toxicity, i.e., oxidative stress and steatosis, is clearly associated with disturbed metal homeostasis. Understanding the mechanisms of this disturbance may provide tools to prevent liver toxicity by other AhR agonists.


Asunto(s)
Cobre/toxicidad , Suplementos Dietéticos , Hígado/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Animales , Cobre/administración & dosificación , Cobre/metabolismo , Relación Dosis-Respuesta a Droga , Hígado/metabolismo , Hígado/patología , Masculino , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Bifenilos Policlorados/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA