RESUMEN
Alcohol and ketogenic diets increase water consumption. Here, we show that the hormone FGF21 is required for this drinking response in mice. Circulating levels of FGF21 are increased by alcohol consumption in humans and by both alcohol and ketogenic diets in mice. Pharmacologic administration of FGF21 stimulates water drinking behavior in mice within 2 hr. Concordantly, mice lacking FGF21 fail to increase water intake in response to either alcohol or a ketogenic diet. The effect of FGF21 on drinking is mediated in part by SIM1-positive neurons of the hypothalamus and is inhibited by ß-adrenergic receptor antagonists. Given that FGF21 also is known to suppress alcohol intake in favor of pure water, this work identifies FGF21 as a fundamental neurotropic hormone that governs water balance in response to specific nutrient stresses that can cause dehydration.
Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Dieta Cetogénica/efectos adversos , Ingestión de Líquidos/fisiología , Factores de Crecimiento de Fibroblastos/farmacología , Factores de Crecimiento de Fibroblastos/fisiología , Antagonistas Adrenérgicos beta/administración & dosificación , Adulto , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ingestión de Líquidos/efectos de los fármacos , Femenino , Factores de Crecimiento de Fibroblastos/administración & dosificación , Factores de Crecimiento de Fibroblastos/genética , Voluntarios Sanos , Humanos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Represoras/metabolismo , Transducción de SeñalRESUMEN
The mechanism by which pharmacologic administration of the hormone FGF21 increases energy expenditure to cause weight loss in obese animals is unknown. Here we report that FGF21 acts centrally to exert its effects on energy expenditure and body weight in obese mice. Using tissue-specific knockout mice, we show that ßKlotho, the obligate coreceptor for FGF21, is required in the nervous system for these effects. FGF21 stimulates sympathetic nerve activity to brown adipose tissue through a mechanism that depends on the neuropeptide corticotropin-releasing factor. Our findings provide an unexpected mechanistic explanation for the strong pharmacologic effects of FGF21 on energy expenditure and weight loss in obese animals.
Asunto(s)
Metabolismo Energético/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/farmacología , Sistema Nervioso Simpático/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Animales , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Hipotálamo/metabolismo , Proteínas Klotho , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Ratones Transgénicos , ARN Mensajero/metabolismo , Sistema Nervioso Simpático/metabolismo , Termogénesis/genéticaRESUMEN
Preventing reproduction during nutritional deprivation is an adaptive process that is conserved and essential for the survival of species. In mammals, the mechanisms that inhibit fertility during starvation are complex and incompletely understood. Here we show that exposure of female mice to fibroblast growth factor 21 (FGF21), a fasting-induced hepatokine, mimics infertility secondary to starvation. Mechanistically, FGF21 acts on the suprachiasmatic nucleus (SCN) in the hypothalamus to suppress the vasopressin-kisspeptin signaling cascade, thereby inhibiting the proestrus surge in luteinizing hormone. Mice lacking the FGF21 co-receptor, ß-Klotho, in the SCN are refractory to the inhibitory effect of FGF21 on female fertility. Thus, FGF21 defines an important liver-neuroendocrine axis that modulates female reproduction in response to nutritional challenge.
Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Infertilidad Femenina/metabolismo , Proteínas de la Membrana/metabolismo , Reproducción , Inanición/metabolismo , Animales , Metabolismo Energético , Femenino , Hipotálamo , Kisspeptinas/antagonistas & inhibidores , Kisspeptinas/metabolismo , Proteínas Klotho , Hormona Luteinizante/biosíntesis , Hormona Luteinizante/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proestro/fisiología , Transducción de Señal , Núcleo Supraquiasmático , Vasopresinas/antagonistas & inhibidores , Vasopresinas/metabolismoRESUMEN
Fibroblast growth factor 21 (FGF21) is a hepatokine that acts as a global starvation signal to modulate fuel partitioning and metabolism and repress growth; however, the site of action of these diverse effects remains unclear. FGF21 signals through a heteromeric cell-surface receptor composed of one of three FGF receptors (FGFR1c, FGFR2c or FGFR3c) in complex with ß-Klotho, a single-pass transmembrane protein that is enriched in metabolic tissues. Here we show that in addition to its known effects on peripheral metabolism, FGF21 increases systemic glucocorticoid levels, suppresses physical activity and alters circadian behavior, which are all features of the adaptive starvation response. These effects are mediated through ß-Klotho expression in the suprachiasmatic nucleus of the hypothalamus and the dorsal vagal complex of the hindbrain. Mice lacking the gene encoding ß-Klotho (Klb) in these regions are refractory to these effects, as well as those on metabolism, insulin and growth. These findings demonstrate a crucial role for the nervous system in mediating the diverse physiologic and pharmacologic actions of FGF21.
Asunto(s)
Ritmo Circadiano/fisiología , Metabolismo Energético , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Sistema Nervioso/metabolismo , Animales , Glucocorticoides/metabolismo , Hipotálamo/metabolismo , Proteínas Klotho , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Actividad Motora , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Inanición , Núcleo Supraquiasmático/metabolismoRESUMEN
The differential expression and secretion of the neuropeptide kisspeptin from neurons in the arcuate (Arc) and anteroventral periventricular (AVPV) nuclei of the hypothalamus coordinate the temporal release of pituitary gonadotropins that control the female reproductive cycle. However, the molecular basis for this differential regulation is incompletely understood. Here, we report that liver receptor homolog-1 (LRH-1), a member of the nuclear receptor superfamily, is expressed in kisspeptin neurons in the Arc but not in the AVPV in female mice. LRH-1 binds directly to the kisspeptin (Kiss1) promoter and stimulates Kiss1 transcription. Deletion of LRH-1 from kisspeptin neurons in mice decreased Kiss1 expression in the Arc, leading to reduced plasma FSH levels, dysregulated follicle maturation, and prolongation of the estrous cycle. Conversely, overexpression of LRH-1 in kisspeptin neurons increased Arc Kiss1 expression and plasma FSH concentrations. These studies provide a molecular basis for the differential regulation of basal kisspeptin expression in Arc and AVPV neurons and reveal a prominent role for LRH-1 in hypothalamus in regulating the female reproductive axis.
Asunto(s)
Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neuropéptidos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Reproducción , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Femenino , Kisspeptinas/genética , Ratones , Neuronas/metabolismo , Neuropéptidos/genética , Folículo Ovárico/metabolismo , Folículo Ovárico/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/genéticaRESUMEN
Hops extracts are used to alleviate menopausal symptoms and as an alternative to hormone replacement therapy, but they can produce potentially harmful drug-drug interactions. The nuclear xenobiotic receptor pregnane X receptor (PXR) is promiscuously activated by a range of structurally distinct chemicals. It has a key role in the transcriptional regulation of genes that encode xenobiotic metabolism enzymes. In this study, hops extracts are shown to induce the expression of numerous drug metabolism and excretion proteins. The beta-bitter acid colupulone is demonstrated to be a bioactive component and direct activator of human PXR. The 2.8-A resolution crystal structure of the ligand binding domain of human PXR in complex with colupulone was elucidated, and colupulone was observed to bind in a single orientation stabilized by both van der Waals and hydrogen bonding contacts. The crystal structure also indicates that related alpha- and beta-bitter acids have the capacity to serve as PXR agonists as well. Taken together, these results reveal the structural basis for drug-drug interactions mediated by colupulone and related constituents of hops extracts.
Asunto(s)
Ciclohexanonas/farmacología , Humulus , Receptores de Esteroides/agonistas , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/biosíntesis , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Hidrocarburo de Aril Hidroxilasas/biosíntesis , Sitios de Unión , Cristalografía por Rayos X , Ciclohexanonas/química , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP3A/biosíntesis , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Técnicas In Vitro , Oxidorreductasas N-Desmetilantes/biosíntesis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Receptor X de Pregnano , ARN Mensajero/biosíntesis , Receptores de Esteroides/química , Regulación hacia ArribaRESUMEN
The nuclear receptors, farnesoid X receptor (FXR) and pregnane X receptor (PXR), are important in maintaining bile acid homeostasis. Deletion of both FXR and PXR in vivo by cross-breeding B6;129-Fxrtm1Gonz (FXR-null) and B6;129-Pxrtm1Glaxo-Wellcome (PXR-null) mice revealed a more severe disruption of bile acid, cholesterol, and lipid homeostasis in B6;129-Fxrtm1Gonz Pxrtm1Glaxo-Wellcome (FXR-PXR double null or FPXR-null) mice fed a 1% cholic acid (CA) diet. Hepatic expression of the constitutive androstane receptor (CAR) and its target genes was induced in FXR- and FPXR-null mice fed the CA diet. To test whether up-regulation of CAR represents a means of protection against bile acid toxicity to compensate for the loss of FXR and PXR, animals were pretreated with CAR activators, phenobarbital or 1,4-bis[2-(3,5-dichlorpyridyloxy)]benzene (TCPOBOP), followed by the CA diet. A role for CAR in protection against bile acid toxicity was confirmed by a marked reduction of serum bile acid and bilirubin concentrations, with an elevation of the expression of the hepatic genes involved in bile acid and/or bilirubin metabolism and excretion (CYP2B, CYP3A, MRP2, MRP3, UGT1A, and glutathione S-transferase alpha), following pretreatment with phenobarbital or TCPOBOP. In summary, the current study demonstrates a critical and combined role of FXR and PXR in maintaining not only bile acid but also cholesterol and lipid homeostasis in vivo. Furthermore, FXR, PXR, and CAR protect against hepatic bile acid toxicity in a complementary manner, suggesting that they serve as redundant but distinct layers of defense to prevent overt hepatic damage by bile acids during cholestasis.
Asunto(s)
Ácidos y Sales Biliares/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas Mitocondriales , Receptores Citoplasmáticos y Nucleares/fisiología , Receptores de Esteroides/fisiología , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/fisiología , Alimentación Animal , Animales , Hidrocarburo de Aril Hidroxilasas/metabolismo , Bilirrubina/metabolismo , Transporte Biológico , Northern Blotting , Peso Corporal , Núcleo Celular/metabolismo , Colesterol/metabolismo , Clonación Molecular , Receptor de Androstano Constitutivo , Cruzamientos Genéticos , Citocromo P-450 CYP3A , Eliminación de Gen , Glutatión Transferasa/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Ratones Transgénicos , Oxidorreductasas N-Desmetilantes/metabolismo , Fenobarbital/metabolismo , Fosfolípidos/metabolismo , Receptor X de Pregnano , Piridinas/farmacología , Proteínas Ribosómicas/metabolismo , Factores de Tiempo , Regulación hacia ArribaRESUMEN
The pregnane X receptor (PXR), which is a member of the nuclear receptor family of ligand-activated transcription factors, is an integral component of the body's defense mechanism against toxic xenobiotics. PXR is activated by a broad spectrum of lipophilic xenobiotics including prescription drugs, herbs, pesticides, endocrine disruptors and other environmental contaminants. The promiscuous ligand-binding properties of PXR are facilitated by the large volume and smooth shape of its ligand-binding pocket. PXR binds to DNA as a heterodimer with the 9-cis retinoic acid receptor (RXR) and regulates a large number of genes involved in the detoxification and excretion of toxic substances. Although PXR evolved to protect the body, its activation by various prescription drugs and herbs such as St. John's wort represents the molecular basis for an important class of drug-drug interactions. Assays that detect PXR activation can now be used to predict and prevent these drug-drug interactions.
Asunto(s)
Hidrocarburo de Aril Hidroxilasas/biosíntesis , Inactivación Metabólica , Oxidorreductasas N-Desmetilantes/biosíntesis , Receptores Citoplasmáticos y Nucleares , Receptores de Esteroides , Xenobióticos , Animales , Sitios de Unión , Citocromo P-450 CYP3A , Interacciones Farmacológicas , Inducción Enzimática , Humanos , Hypericum/fisiología , Receptor X de Pregnano , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Receptores de Esteroides/fisiología , Xenobióticos/efectos adversos , Xenobióticos/antagonistas & inhibidores , Xenobióticos/metabolismoRESUMEN
The nuclear xenobiotic receptor PXR is activated by a wide variety of clinically used drugs and serves as a master regulator of drug metabolism and excretion gene expression in mammals. St. John's wort is used widely in Europe and the United States to treat depression. This unregulated herbal remedy leads to dangerous drug-drug interactions, however, in patients taking oral contraceptives, antivirals, or immunosuppressants. Such interactions are caused by the activation of the human PXR by hyperforin, the psychoactive agent in St. John's wort. In this study, we show that hyperforin induces the expression of numerous drug metabolism and excretion genes in primary human hepatocytes. We present the 2.1 A crystal structure of hyperforin in complex with the ligand binding domain of human PXR. Hyperforin induces conformational changes in PXR's ligand binding pocket relative to structures of human PXR elucidated previously and increases the size of the pocket by 250 A(3). We find that the mutation of individual aromatic residues within the ligand binding cavity changes PXR's response to particular ligands. Taken together, these results demonstrate that PXR employs structural flexibility to expand the chemical space it samples and that the mutation of specific residues within the ligand binding pocket of PXR tunes the receptor's response to ligands.