RESUMEN
A cDNA encoding a novel inwardly rectifying potassium (K+(in)) channel, LKT1, was cloned from a root-hair-specific cDNA library of tomato (Lycopersicon esculentum Mill.). The LKT1 mRNA was shown to be most strongly expressed in root hairs by Northern blot analysis. The LKT1 channel is a member of the AKT family of K+(in) channels previously identified in Arabidopsis thaliana (L.) Heynh. and potato (Solanum tuberosum L.). Moreover, LKT1 is closely related (97% identical amino acids) to potato SKT1. An electrophysiological comparison of the two channels should therefore assist the identification of possible molecular bases for functional differences. For, this comparison, both channels were functionally expressed and electrophysiologically characterised within the same expression system, i.e. Xenopus laevis oocytes. Voltage-clamp measurements identified LKT1 as a K(+)-selective inward rectifier which activates with slow kinetics upon hyperpolarising voltage pulses to potentials more negative than -50 mV. The activation potential of LKT1 is shifted towards positive potentials with respect to SKT1 which might be due to single amino acid exchanges in the rim of the channel's pore region or in the S4 domain. Like SKT1, LKT1 reversibly activated upon shifting the external pH from 6.6 to 5.5, which indicates a physiological role for pH-dependent regulation of AKT-type K+(in) channels. The pharmacological inhibitor Cs+, applied externally, inhibited K+(in) currents mediated by LKT1 and SKT1 half-maximally with a concentration (IC50) of 21 microM and 17 microM, respectively. In conclusion, LKT1 may serve as a low-affinity influx pathway for K+ into root hair cells. Comparison of homologous K+(in) rectifiers from different plant species expressed in the same heterologous system allows conclusions to be drawn in respect to structure-function relationships.
Asunto(s)
Raíces de Plantas/genética , Canales de Potasio/fisiología , Solanum lycopersicum/genética , Solanum tuberosum/genética , Secuencia de Aminoácidos , Animales , Northern Blotting , Cesio/farmacología , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Relación Dosis-Respuesta a Droga , Electrofisiología , Femenino , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Potenciales de la Membrana/efectos de los fármacos , Datos de Secuencia Molecular , Oocitos , Canales de Potasio/genética , ARN Complementario/administración & dosificación , ARN Complementario/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Distribución Tisular , Xenopus laevisRESUMEN
Sulfur plays an important role in plants, being used for the biosynthesis of amino acids, sulfolipids and secondary metabolites. After uptake sulfate is activated and subsequently reduced to sulfide or serves as donor for sulfurylation reactions. The first step in the activation of sulfate in all cases studied so far is catalyzed by the enzyme ATP-sulfurylase (E.C. 2.7.7.4.) which catalyzes the formation of adenosine-5'-phosphosulfate (APS). Two cDNA clones from potato encoding ATP-sulfurylases were identified following transformation of a Saccharomyces cerevisiae mutant deficient in ATP-sulfurylase activity with a cDNA library from potato source leaf poly(A)+ RNA cloned in a yeast expression vector. Several transformants were able to grow on a medium with sulfate as the only sulfur source, this ability being strictly linked to the presence of two classes of cDNAs. The clones StMet3-1 and StMet3-2 were further analyzed. DNA analysis revealed an open reading frame encoding a protein with a molecular mass of 48 kDa in the case of StMet3-1 and 52 kDa for StMet3-2. The deduced polypeptides are 88% identical at the amino acid level. The clone StMet3-2 has a 48 amino acid N-terminal extension which shows common features of a chloroplast transit peptide. Sequence comparison of the ATP-sulfurylase Met3 from Saccharomyces cerevisiae with the cDNA StMet3-1 (StMet3-2) reveals 31% (30%) identity at the amino acid level. Protein extracts from the yeast mutant transformed with the clone StMet3-1 displayed ATP-sulfurylase activity. RNA blot analysis demonstrated the expression of both genes in potato leaves, root and stem, but not in tubers.(ABSTRACT TRUNCATED AT 250 WORDS)