Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theranostics ; 9(13): 3903-3917, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31281521

RESUMEN

Cysteine-type cathepsins such as cathepsin B are involved in various steps of inflammatory processes such as antigen processing and angiogenesis. Here, we uncovered the role of cysteine-type cathepsins in the effector phase of T cell-driven cutaneous delayed-type hypersensitivity reactions (DTHR) and the implication of this role on therapeutic cathepsin B-specific inhibition. Methods: Wild-type, cathepsin B-deficient (Ctsb-/-) and cathepsin Z-deficient (Ctsz-/-) mice were sensitized with 2,4,6-trinitrochlorobenzene (TNCB) on the abdomen and challenged with TNCB on the right ear to induce acute and chronic cutaneous DTHR. The severity of cutaneous DTHR was assessed by evaluating ear swelling responses and histopathology. We performed fluorescence microscopy on tissue from inflamed ears and lymph nodes of wild-type mice, as well as on biopsies from psoriasis patients, focusing on cathepsin B expression by T cells, B cells, macrophages, dendritic cells and NK cells. Cathepsin activity was determined noninvasively by optical imaging employing protease-activated substrate-like probes. Cathepsin expression and activity were validated ex vivo by covalent active site labeling of proteases and Western blotting. Results: Noninvasive in vivo optical imaging revealed strong cysteine-type cathepsin activity in inflamed ears and draining lymph nodes in acute and chronic cutaneous DTHR. In inflamed ears and draining lymph nodes, cathepsin B was expressed by neutrophils, dendritic cells, macrophages, B, T and natural killer (NK) cells. Similar expression patterns were found in psoriatic plaques of patients. The biochemical methods confirmed active cathepsin B in tissues of mice with cutaneous DTHR. Topically applied cathepsin B inhibitors significantly reduced ear swelling in acute but not chronic DTHR. Compared with wild-type mice, Ctsb-/- mice exhibited an enhanced ear swelling response during acute DTHR despite a lack of cathepsin B expression. Cathepsin Z, a protease closely related to cathepsin B, revealed compensatory expression in inflamed ears of Ctsb-/- mice, while cathepsin B expression was reciprocally elevated in Ctsz-/- mice. Conclusion: Cathepsin B is actively involved in the effector phase of acute cutaneous DTHR. Thus, topically applied cathepsin B inhibitors might effectively limit DTHR such as contact dermatitis or psoriasis. However, the cathepsin B and Z knockout mouse experiments suggested a complementary role for these two cysteine-type proteases.


Asunto(s)
Catepsinas/metabolismo , Cisteína/metabolismo , Hipersensibilidad Tardía/enzimología , Piel/patología , Enfermedad Aguda , Animales , Dominio Catalítico , Catepsinas/antagonistas & inhibidores , Enfermedad Crónica , Femenino , Humanos , Inflamación/patología , Ratones Endogámicos C57BL , Imagen Óptica , Cloruro de Picrilo , Inhibidores de Proteasas/farmacología
2.
Proc Natl Acad Sci U S A ; 112(4): 1161-6, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25587131

RESUMEN

T cells are key players in inflammation, autoimmune diseases, and immunotherapy. Thus, holistic and noninvasive in vivo characterizations of the temporal distribution and homing dynamics of lymphocytes in mammals are of special interest. Herein, we show that PET-based T-cell labeling facilitates quantitative, highly sensitive, and holistic monitoring of T-cell homing patterns in vivo. We developed a new T-cell receptor (TCR)-specific labeling approach for the intracellular labeling of mouse T cells. We found that continuous TCR plasma membrane turnover and the endocytosis of the specific (64)Cu-monoclonal antibody (mAb)-TCR complex enables a stable labeling of T cells. The TCR-mAb complex was internalized within 24 h, whereas antigen recognition was not impaired. Harmful effects of the label on the viability, DNA-damage and apoptosis-necrosis induction, could be minimized while yielding a high contrast in in vivo PET images. We were able to follow and quantify the specific homing of systemically applied (64)Cu-labeled chicken ovalbumin (cOVA)-TCR transgenic T cells into the pulmonary and perithymic lymph nodes (LNs) of mice with cOVA-induced airway delayed-type hypersensitivity reaction (DTHR) but not into pulmonary and perithymic LNs of naïve control mice or mice diseased from turkey or pheasant OVA-induced DTHR. Our protocol provides consequent advancements in the detection of small accumulations of immune cells in single LNs and specific homing to the sites of inflammation by PET using the internalization of TCR-specific mAbs as a specific label of T cells. Thus, our labeling approach is applicable to other cells with constant membrane receptor turnover.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Tomografía de Emisión de Positrones/métodos , Receptores de Antígenos/antagonistas & inhibidores , Linfocitos T/diagnóstico por imagen , Animales , Apoptosis/inmunología , Radioisótopos de Cobre , Daño del ADN/inmunología , Ratones , Trazadores Radiactivos , Radiografía , Receptores de Antígenos/inmunología , Linfocitos T/inmunología
3.
J Nucl Med ; 55(2): 301-7, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24434289

RESUMEN

UNLABELLED: Although T cells can be labeled for noninvasive in vivo imaging, little is known about the impact of such labeling on T-cell function, and most imaging methods do not provide holistic information about trafficking kinetics, homing sites, or quantification. METHODS: We developed protocols that minimize the inhibitory effects of (64)Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) ((64)Cu-PTSM) labeling on T-cell function and permit the homing patterns of T cells to be followed by PET. Thus, we labeled ovalbumin (OVA) T-cell receptor transgenic interferon (IFN)-γ-producing CD4(+) T (Th1) cells with 0.7-2.2 MBq of (64)Cu-PTSM and analyzed cell viability, IFN-γ production, proliferation, apoptosis, and DNA double-strand breaks and identified intracellular (64)Cu accumulation sites by energy dispersive x-ray analysis. To elucidate the fate of Th1 cell homing by PET, 10(7 64)Cu-OVA-Th1 cells were injected intraperitoneally or intravenously into healthy mice. To test the functional capacities of (64)Cu-OVA-Th1 cells during experimental OVA-induced airway hyperreactivity, we injected 10(7 64)Cu-OVA-Th1 cells intraperitoneally into OVA-immunized or nonimmunized healthy mice, which were challenged with OVA peptide or phosphate-buffered saline or remained untreated. In vivo PET investigations were followed by biodistribution, autoradiography, and fluorescence-activated cell sorting analysis. RESULTS: PET revealed unexpected homing patterns depending on the mode of T-cell administration. Within 20 min after intraperitoneal administration, (64)Cu-OVA-Th1 cells homed to the perithymic lymph nodes (LNs) of naive mice. Interestingly, intravenously administered (64)Cu-OVA-Th1 cells homed predominantly into the lung and spleen but not into the perithymic LNs. The accumulation of (64)Cu-OVA-Th1 cells in the pulmonary LNs (6.8 ± 1.1 percentage injected dose per cubic centimeter [%ID/cm(3)]) 24 h after injection was highest in the OVA-immunized and OVA-challenged OVA airway hyperreactivity-diseased littermates 24 h after intraperitoneal administration and lowest in the untreated littermates (3.7 ± 0.4 %ID/cm(3)). As expected, (64)Cu-OVA-Th1 cells also accumulated significantly in the pulmonary LNs of nonimmunized OVA-challenged animals (6.1 ± 0.5 %ID/cm(3)) when compared with phosphate-buffered saline-challenged animals (4.6 ± 0.5 %ID/cm(3)). CONCLUSION: Our protocol permits the detection of Th1 cells in single LNs and enables temporal in vivo monitoring of T-cell homing over 48 h. This work enables future applications for (64)Cu-PTSM-labeled T cells in clinical trials and novel therapy concepts focusing on T-cell-based immunotherapies of autoimmune diseases or cancer.


Asunto(s)
Tejido Linfoide/efectos de los fármacos , Tejido Linfoide/diagnóstico por imagen , Compuestos Organometálicos , Tomografía de Emisión de Positrones/métodos , Células TH1/citología , Tiosemicarbazonas , Animales , Apoptosis , Autoinmunidad , Movimiento Celular , Proliferación Celular , Separación Celular , Supervivencia Celular , Radioisótopos de Cobre , Roturas del ADN de Doble Cadena , Citometría de Flujo , Inmunoterapia/métodos , Interferón gamma/metabolismo , Ganglios Linfáticos/patología , Ratones , Péptidos/química , Factores de Tiempo , Distribución Tisular
4.
J Nucl Med ; 53(5): 823-30, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22492733

RESUMEN

UNLABELLED: Noninvasive in vivo imaging of biologic processes using PET is an important tool in preclinical studies. We observed significant differences in 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) uptake in arthritic ankles and carcinomas between dynamic and static PET measurements when mice breathed oxygen. Thus, we suspected that air or oxygen breathing and the anesthesia protocol might influence (18)F-FLT tracer uptake. METHODS: We injected arthritic, healthy, and CT26 colon carcinoma-bearing mice with (18)F-FLT before static or dynamic small-animal PET measurements. The spontaneously oxygen- or air-breathing mice were kept conscious or anesthetized with ketamine and xylazine during (18)F-FLT uptake before the 10-min static PET measurements. For dynamic PET scans, mice were anesthetized during the entire measurement. (18)F-FLT uptake was reported in percentage injected dose per cubed centimeter by drawing regions of interest around ankles, carcinomas, and muscle tissue. Additionally, venous blood samples were collected before (18)F-FLT injection and after PET measurement to analyze pH, carbon dioxide partial pressure (pCO(2)), and lactate values. RESULTS: A significantly reduced (18)F-FLT uptake was measured in arthritic ankles and in CT26 colon carcinomas when the mice breathed oxygen and were conscious during tracer uptake, compared with mice that were anesthetized during (18)F-FLT uptake. Breathing air completely abolished this phenomenon. Analysis of blood samples that were obtained from the mice before (18)F-FLT injection and after the PET scan implicated respiratory acidosis that was induced by oxygen breathing and consciousness during tracer uptake. Acidosis was found to be the primary factor responsible for the reduced (18)F-FLT uptake, as reflected by increased pCO(2) and reduced pH and lactate values. CONCLUSION: Oxygen-breathing conscious mice sustained respiratory acidosis and, consequently, reduced cell proliferation and (18)F-FLT uptake in arthritic ankles and CT26 colon carcinomas. Thus, we suggest the use of air instead of oxygen breathing for (18)F-FLT PET measurements.


Asunto(s)
Artritis/metabolismo , Artefactos , Neoplasias del Colon/metabolismo , Didesoxinucleósidos/metabolismo , Oxígeno/farmacología , Respiración , Anestesia , Animales , Tobillo/diagnóstico por imagen , Artritis/inducido químicamente , Artritis/diagnóstico por imagen , Transporte Biológico/efectos de los fármacos , Dióxido de Carbono/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/patología , Estado de Conciencia , Modelos Animales de Enfermedad , Femenino , Glucosa-6-Fosfato Isomerasa/farmacología , Ketamina/farmacología , Ácido Láctico/metabolismo , Ratones , Ratones Endogámicos BALB C , Oxígeno/metabolismo , Tomografía de Emisión de Positrones , Xilazina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA