Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36176142

RESUMEN

The efficacy of trans-spinal direct current stimulation (tsDCS) as neurorehabilitation technology remains sub-optimal, partly due to the variability introduced by subject-specific neurophysiological features and stimulation conditions (e.g. electrode placement, stimulating amplitude, polarity, etc.) Hence, current therapies apply tsDCS in an open-loop fashion, resulting in a lack of standardized protocols for controlling elicited neuronal adaptations in closed-loop. Through the combination of high-density electromyogram (HD-EMG) decomposition, biophysical neuronal modelling and metaheuristic optimization, this work presents a novel neural data-driven framework for estimating subject-specific features and quantifying acute neuronal adaptations elicited by tsDCS on incomplete spinal cord injury subjects. This approach consists of calibrating the anatomical parameters (e.g. soma diameter) of in silico $\alpha-$motoneuron (MN) models for firing similarly to in vivo MNs decoded from HD-EMG. Assuming that cathodal-tsDCS elicits excitability changes in the MN pool, while preserving their anatomical parameters, optimization of an excitability gain common to the entire pool was performed to minimize discrepancies in firing rate and recruitment time between in vivo and in silico MNs after cathodal-tsDCS. This quantification of excitability changes on MN models calibrated in a person specific way enables closing the loop with neuro-modulation devices to tailor neurorehabilitation therapies. Clinical Relevance - This framework addresses a key limitation in non-invasive neuro-modulative technologies via a novel model-assisted framework that enables quantifying acute excitability changes induced on a person-specific in silico MN pool calibrated using in vivo neural data. This will enable the development of advanced controllers for modulating targeted neuronal adaptations in closed-loop.


Asunto(s)
Rehabilitación Neurológica , Traumatismos de la Médula Espinal , Estimulación Eléctrica Transcutánea del Nervio , Electromiografía , Potenciales Evocados Motores/fisiología , Humanos , Estimulación Eléctrica Transcutánea del Nervio/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA