RESUMEN
PURPOSE: The widespread use of nanoparticles (NPs) in industrial and biomedical applications has prompted growing concern regarding their potential toxicity and impact on human health. This study therefore investigated the subchronic, systemic oral toxicity and no-observed-adverse-effect level (NOAEL) of 20 nm, negatively charged zinc oxide (ZnO(SM20(-))) NPs in Sprague Dawley rats for 90 days. METHODS: The high-dose NP level was set at 500 mg/kg of bodyweight, and the mid- and low-dose levels were set at 250 and 125 mg/kg, respectively. The rats were observed during a 14-day recovery period after the last NP administration for the persistence or reduction of any adverse effects. Toxicokinetic and distribution studies were also conducted to determine the systemic distribution of the NPs. RESULTS: No rats died during the test period. However, ZnO(SM20(-)) NPs (500 mg/kg) induced changes in the levels of anemia-related factors, prompted acinar cell apoptosis and ductular hyperplasia, stimulated periductular lymphoid cell infiltration and excessive salivation, and increased the numbers of regenerative acinar cells in the pancreas. In addition, stomach lesions were seen at 125, 250, and 500 mg/kg, and retinal atrophy was observed at 250 and 500 mg/kg. The Zn concentration was dose-dependently increased in the liver, kidney, intestines, and plasma, but not in other organs investigated. CONCLUSION: A ZnO(SM20(-)) NP NOAEL could not be established from the current results, but the lowest-observed-adverse-effect level was 125 mg/kg. Furthermore, the NPs were associated with a number of undesirable systemic actions. Thus, their use in humans must be approached with caution.
Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Administración Oral , Animales , Aniones , Apoptosis/efectos de los fármacos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Páncreas/efectos de los fármacos , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Distribución Tisular , Pruebas de Toxicidad Subcrónica , Óxido de Zinc/administración & dosificación , Óxido de Zinc/química , Óxido de Zinc/farmacocinética , Óxido de Zinc/toxicidadRESUMEN
PURPOSE: The study reported here was conducted to determine the systemic oral toxicity and to find the no-observed-adverse-effect level of 20 nm positively charged zinc oxide (ZnO(SM20(+))) nanoparticles in Sprague Dawley rats for 90 days. METHODS: For the 90-day toxicity study, the high dose was set as 500 mg per kg of body weight (mg/kg) and the middle and low dose were set to 250 mg/kg and 125 mg/kg, respectively. The rats were held for a 14-day recovery period after the last administration, to observe for the persistence or reduction of any toxic effects. A distributional study was also carried out for the systemic distribution of ZnO(SM20(+)) NPs. RESULTS: No rats died during the test period. There were no significant clinical changes due to the test article during the experimental period in functional assessment, body weight, food and water consumption, ophthalmological testing, urine analysis, necropsy findings, or organ weights, but salivation was observed immediately after administration in both sexes. The total red blood cell count was increased, and hematocrit, albumin, mean cell volume, mean cell hemoglobin, and mean cell hemoglobin concentration were decreased significantly compared with control in both 500 mg/kg groups. Total protein and albumin levels were decreased significantly in both sexes in the 250 and 500 mg/kg groups. Histopathological studies revealed acinar cell apoptosis in the pancreas, inflammation and edema in stomach mucosa, and retinal atrophy of the eye in the 500 mg/kg group. CONCLUSION: There were significant parameter changes in terms of anemia in the hematological and blood chemical analyses in the 250 and 500 mg/kg groups. The significant toxic change was observed to be below 125 mg/kg, so the no-observed-adverse-effect level was not determined, but the lowest-observed-adverse-effect level was considered to be 125 mg/kg in both sexes and the target organs were found to be the pancreas, eye, and stomach.
Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Cationes , Edema , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Páncreas/efectos de los fármacos , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Distribución Tisular , Pruebas de Toxicidad Subcrónica , Óxido de Zinc/administración & dosificación , Óxido de Zinc/química , Óxido de Zinc/farmacocinética , Óxido de Zinc/toxicidadRESUMEN
Nanoparticles (NPs) are used commercially in health and fitness fields, but information about the toxicity and mechanisms underlying the toxic effects of NPs is still very limited. The aim of this study is to investigate the toxic effect(s) of 100 nm negatively (ZnO(AE100[-])) or positively (ZnO(AE100[+])) charged zinc oxide (ZnO) NPs administered by gavage in Sprague Dawley rats, to establish a no observed adverse effect level, and to identify target organ(s). After verification of the primary particle size, morphology, hydrodynamic size, and zeta potential of each test article, we performed a 90-day study according to Organisation for Economic Co-operation and Development test guideline 408. For the 90-day study, the high dose was set at 500 mg/kg and the middle and low doses were set at 125 mg/kg and 31.25 mg/kg, respectively. Both ZnO NPs had significant changes in hematological and blood biochemical analysis, which could correlate with anemia-related parameters, in the 500 mg/kg groups of both sexes. Histopathological examination showed significant adverse effects (by both test articles) in the stomach, pancreas, eye, and prostate gland tissues, but the particle charge did not affect the tendency or the degree of the lesions. We speculate that this inflammatory damage might result from continuous irritation caused by both test articles. Therefore, the target organs for both ZnO(AE100(-)) and ZnO(AE100(+)) are considered to be the stomach, pancreas, eye, and prostate gland. Also, the no observed adverse effect level for both test articles was identified as 31.25 mg/kg for both sexes, because the adverse effects were observed at all doses greater than 125 mg/kg.
Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Administración Oral , Animales , Femenino , Masculino , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Páncreas/efectos de los fármacos , Ratas Sprague-Dawley , Estómago/efectos de los fármacos , Distribución Tisular , Pruebas de Toxicidad , Óxido de Zinc/administración & dosificación , Óxido de Zinc/química , Óxido de Zinc/farmacocinética , Óxido de Zinc/toxicidadRESUMEN
Sanguisorbae radix (SR), the root of Sanguisorba officinalis L. (Rosaceae), has been traditionally used for its anti-inflammatory, anti-infectious and analgesic activities in Korea. Previous work has shown that SR prevents neuronal cell damage induced by Abeta (25--35) in cultured rat cortical neurons. The present study was carried out to further investigate the neuroprotective effect of SR on oxidative stress-induced toxicity in primary culture of rat cortical neurons, and on ischemia-induced brain damage in rats. SR, over a concentration range of 10--50 microg/ml, inhibited H2O2 (100 microM)-induced neuronal death, which was significantly inhibited by MK-801 (5 microM), an N-methyl-D-aspartate (NMDA) receptor antagonist, and verapamil (20 microM), an L-type Ca2+ channel blocker. Pretreatment of SR (10-50 microg/ml), MK-801 (5 microM), and verapamil (20 microM) inhibited H2O2-induced elevation of intracellular Ca2+ concentration ([Ca2+]i) measured by a fluorescent dye, Fluo-4 AM. SR (10-50 microg/ml) inhibited H2O2-induced glutamate release into medium measured by HPLC, and generation of reactive oxygen species (ROS) measured by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). In vivo, SR prevented cerebral ischemic injury induced by 2-h middle cerebral artery occlusion (MCAO) and 24-h reperfusion. The ischemic infarct and edema were significantly reduced in rats that received SR (10, 30 mg/kg, orally), with a corresponding improvement in neurological function. Catechin isolated from SR inhibited H2O2-induced neuronal death in cultures. Taken together, these results suggest that SR inhibits H2O2-induced neuronal death by interfering with the increase of [Ca2+]i, and inhibiting glutamate release and generation of ROS, and that the neuroprotective effect of SR against focal cerebral ischemic injury is due to its anti-oxidative effects. Thus SR might have therapeutic roles in neurodegenerative diseases such as stroke.
Asunto(s)
Encefalopatías/prevención & control , Fármacos Neuroprotectores/uso terapéutico , Síndromes de Neurotoxicidad/prevención & control , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Sanguisorba/química , Animales , Apoptosis/efectos de los fármacos , Encefalopatías/inducido químicamente , Encefalopatías/metabolismo , Encefalopatías/patología , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Glutatión/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Raíces de Plantas/química , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismoRESUMEN
The aim of the present study was to investigate the vasoactive effect of Crotalaria sessiliflora L. extract (CSE) on rats and its mechanism when combining in vivo and in vitro approaches. CSE (0.5-5 mg/ml) induced concentration-dependent relaxation on endothelium-intact thoracic aortic rings precontracted with phenylephrine (PE, 10(-5) M). This effect disappeared with the removal of functional endothelium. Pretreatment of the aortic strips with either N(G)-nitro-L-arginine (L-NNA, 10(-5) M) or methylene blue (10(-5) M) significantly reduced the relaxation induced by CSE. The endothelium-dependent relaxation caused by CSE was associated with production of cGMP. CSE (5 mg/ml) increased the production of cGMP in endothelium-intact aortic rings and this effect was significantly attenuated by L-NNA (10(-5) M) and methylene blue (10(-5) M). Relaxation in response to CSE in strips precontracted with PGF2alpha (3x10(-5) M) was eliminated by removing extracellular Ca2+ and significantly reduced by pretreatment with ruthenium red (10(-5) M). In in vivo tests, injection of 40 mg/kg of CSE induced an increase in plasma NO production, and this effect was blocked by L-NNA. Furthermore, CSE produced dose-dependent and transient decrease in blood pressure in normotensive rats and this effect was blocked by atropine as well as L-NNA. These findings suggest that CSE induces endothelium-dependent relaxation via NO/cGMP signaling by promoting extracellular Ca2+ influx and the release of Ca2+ from intracellular stores of endothelium, probably due to endothelial muscarinic receptor activation.
Asunto(s)
Antihipertensivos/farmacología , Crotalaria , Endotelio Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/fisiología , Presión Sanguínea/efectos de los fármacos , Calcio/metabolismo , GMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Endotelio Vascular/metabolismo , Técnicas In Vitro , Masculino , Óxido Nítrico/sangre , Óxido Nítrico/metabolismo , Componentes Aéreos de las Plantas , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Muscarínicos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de TiempoRESUMEN
Smilax has various pharmacological effects including antiinflammatory, anticancer and antioxidant activity. The present study aims to investigate the effect of the methanol extract of Smilacis chinae rhizome (SCR) from Smilax china L. (Liliaceae) on amyloid beta protein (Abeta) (25-35), a synthetic 25-35 amyloid peptide, -induced neurotoxicity in cultured rat cerebral cortical neurons. Abeta (25-35) (10 microM) produced a reduction of cell viability, which was significantly reduced by (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), an N-methyl-D-aspartate (NMDA) receptor antagonist, verapamil, an L-type Ca2+ channel blocker, and NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor. SCR, over a concentration range of 10-50 microg/ml, inhibited 10 microM Abeta (25-35)-induced neuronal cell death, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. SCR (50 microg/ml) inhibited 10 microM Abeta (25-35)-induced elevation of cytosolic calcium concentration ([Ca2+]c), which was measured by a fluorescent dye, Fluo-4 AM. Pretreatment of SCR (10 and 50 microg/ml) also inhibited glutamate release into medium induced by 10 microM Abeta (25-35), which was measured by HPLC, generation of reactive oxygen species and activation of caspase-3. These results suggest that SCR prevents Abeta (25-35)-induced neuronal cell damage in vitro.
Asunto(s)
Péptidos beta-Amiloides/toxicidad , Corteza Cerebral/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/toxicidad , Smilax , Animales , Calcio/metabolismo , Caspasa 3/metabolismo , Supervivencia Celular , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Citosol/metabolismo , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Activación Enzimática , Ácido Glutámico/metabolismo , Metanol , Neuronas/metabolismo , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Rizoma , SolventesRESUMEN
Polygalae Radix (PR) from Polygala tenuifolia (Polygalaceae) is traditionally used in China and Korea, as this herb has a sedative, anti-inflammatory and antibacterial agent. To extend our understanding of the pharmacological actions of PR in the CNS on the basis of its CNS inhibitory effect, the present study examined whether PR has the neuroprotective action against N-methyl-D-aspartate (NMDA)-induced cell death in primarily cultured rat cerebellar granule neurons. PR, over a concentration range of 0.05 to 5 microg/ml, inhibited NMDA (1 mM)-induced neuronal cell death, which was measured by a trypan blue exclusion test and a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay. PR (0.5 microg/ml) inhibited glutamate release into medium induced by NMDA (1 mM), which was measured by HPLC. Pre-treatment of PR (0.5 microg/ml) inhibited NMDA (1 mM)-induced elevation of intracellular Ca2+ concentration ([Ca2+]i), which was measured by a fluorescent dye, Fura 2-AM, and generation of reactive oxygen species (ROS). These results suggest that PR prevents NMDA-induced neuronal cell damage in vitro.
Asunto(s)
N-Metilaspartato/toxicidad , Neuronas/efectos de los fármacos , Preparaciones de Plantas/farmacología , Polygalaceae , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Cerebelo/citología , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Ácido Glutámico/análisis , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Preparaciones de Plantas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Zizypus is one of the herbs widely used in Korea and China due to the CNS calming effect. The present study aims to investigate the effect of the methanol extract of Zizyphi Spinosi Semen (ZSS), the seeds of Zizyphus jujuba Mill var. spinosa, on N-methyl-D-aspartate (NMDA)-induced neurotoxicity in cultured rat cerebellar granule neuron. ZSS, over a concentration range of 0.05-5 microg/ml, inhibited NMDA (1 mM)-induced neuronal cell death, which was measured by a trypan blue exclusion test and a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay. ZSS (0.5 microg/ml) inhibited glutamate release into medium induced by NMDA (1mM), which was measured by HPLC. Pretreatment of ZSS (0.5 microg/ml) inhibited NMDA (1mM)-induced elevation of cytosolic calcium concentration ([Ca(2+)](c)), which was measured by a fluorescent dye, Fura 2-AM, and generation of reactive oxygen species (ROS). These results suggest that ZSS prevents NMDA-induced neuronal cell damage in vitro.
Asunto(s)
Cerebelo/efectos de los fármacos , N-Metilaspartato/toxicidad , Neuronas/efectos de los fármacos , Ziziphus , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Relación Dosis-Respuesta a Droga , Metanol/farmacología , Neuronas/metabolismo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley , SemillasRESUMEN
The present study was performed to examine the neuroprotective effects of fangchinoline (FAN) and tetrandrine (TET), bis-benzylisoquinoline alkaloids, which exhibit the characteristics of Ca 2+ channel blockers, on H2O2 -induced neurotoxicity using cultured rat cerebellar granule neurons. H2O2 produced a concentration-dependent reduction of cell viability, which was blocked by (5 R,10 S)-(+)-5-methyl-10,11-dihydro-5 H-dibenzo[ a,d]cyclohepten-5,10-imine (MK-801), an N-methyl- D-aspartate (NMDA) receptor antagonist, verapamil, an L-type Ca 2+ channel blocker, and NG-nitro- L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor. Pretreatment with FAN and TET over a concentration range of 0.1 to 10 microM significantly decreased the H2O2 -induced neuronal cell death as assessed by a trypan blue exclusion test, a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and the number of apoptotic nuclei. In addition, FAN and TET inhibited the H2O2 -induced elevation of glutamate release into the medium, elevation of the cytosolic free Ca 2+ concentration ([Ca 2+] c ), and generation of reactive oxygen species (ROS). These results suggest that FAN and TET may mitigate the harmful effects of H2O2 -induced neuronal cell death by interfering with the increase of [Ca 2+] c, and then by inhibiting glutamate release and generation of ROS. Abbreviations. AP5:D(-)-2-amino-5-phosphonopentanoic acid DMSO:dimethyl sulfoxide FAN:fangchinoline H 2 DCF-DA:2',7'-dichlorodihydrofluorescin diacetate MK-801:(5 R,10 S)-(+)-5-methyl-10,11-dihydro-5 H-dibenzo[ a,d]cyclohepten-5,20-imine MTT:3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide L-NAME: NG-Nitro- L-arginine methyl ester NMDA: N-methyl- D-aspartate TET:tetrandrine