Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 242(4): 1576-1588, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38173184

RESUMEN

Phosphorus (P) for carbon (C) exchange is the pivotal function of arbuscular mycorrhiza (AM), but how this exchange varies with soil P availability and among co-occurring plants in complex communities is still largely unknown. We collected intact plant communities in two regions differing c. 10-fold in labile inorganic P. After a 2-month glasshouse incubation, we measured 32P transfer from AM fungi (AMF) to shoots and 13C transfer from shoots to AMF using an AMF-specific fatty acid. AMF communities were assessed using molecular methods. AMF delivered a larger proportion of total shoot P in communities from high-P soils despite similar 13C allocation to AMF in roots and soil. Within communities, 13C concentration in AMF was consistently higher in grass than in blanketflower (Gaillardia aristata Pursh) roots, that is P appeared more costly for grasses. This coincided with differences in AMF taxa composition and a trend of more vesicles (storage structures) but fewer arbuscules (exchange structures) in grass roots. Additionally, 32P-for-13C exchange ratios increased with soil P for blanketflower but not grasses. Contrary to predictions, AMF transferred proportionally more P to plants in communities from high-P soils. However, the 32P-for-13C exchange differed among co-occurring plants, suggesting differential regulation of the AM symbiosis.


Asunto(s)
Carbono , Micorrizas , Fósforo , Suelo , Micorrizas/fisiología , Micorrizas/metabolismo , Fósforo/metabolismo , Carbono/metabolismo , Suelo/química , Brotes de la Planta/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Isótopos de Carbono , Plantas/metabolismo , Plantas/microbiología , Ambiente , Poaceae/metabolismo
2.
Mycorrhiza ; 29(1): 29-38, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30421153

RESUMEN

Invasive species often reduce ecosystem services and lead to a serious threat to native biodiversity. Roots of invasive plants are often linked to roots of native plants by common mycorrhizal networks (CMNs) of arbuscular mycorrhizal (AM) fungi, but whether and how CMNs mediate interactions between invasive and native plant species remains largely uninvestigated. We conducted two microcosm experiments, one in which we amended the soil with mineral N and another in which we amended the soil with mineral P. In each experiment, we grew a pair of test plants consisting of Kummerowia striata (native to our research site) and Solidago canadensis (an invasive species). CMNs were established between the plants, and these were either left intact or severed. Intact CMNs increased growth and nutrient acquisition by S. canadensis while they decreased nutrient acquisition by K. striata in comparison with severed CMNs. 15N and P analyses indicated that compared to severed CMNs, intact CMNs preferentially transferred mineral nutrients to S. canadensis. CMNs produced by different species of AM fungi had slightly different effects on the interaction between these two plant species. These results highlight the role of CMNs in the understanding of interactions between the invasive species S. canadensis and its native neighbor.


Asunto(s)
Fabaceae/metabolismo , Minerales/metabolismo , Micorrizas/fisiología , Nutrientes/metabolismo , Solidago/metabolismo , Fabaceae/microbiología , Especies Introducidas , Solidago/microbiología
3.
Proc Natl Acad Sci U S A ; 113(31): 8741-6, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27432986

RESUMEN

Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich "hotspots" can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together.


Asunto(s)
Carbono/metabolismo , Micorrizas/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Simbiosis , Árboles/metabolismo , Ecosistema , Micorrizas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Suelo/química , Microbiología del Suelo , Árboles/crecimiento & desarrollo , Árboles/microbiología
4.
New Phytol ; 208(1): 125-36, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25925733

RESUMEN

In most cases, both roots and mycorrhizal fungi are needed for plant nutrient foraging. Frequently, the colonization of roots by arbuscular mycorrhizal (AM) fungi seems to be greater in species with thick and sparsely branched roots than in species with thin and densely branched roots. Yet, whether a complementarity exists between roots and mycorrhizal fungi across these two types of root system remains unclear. We measured traits related to nutrient foraging (root morphology, architecture and proliferation, AM colonization and extramatrical hyphal length) across 14 coexisting AM subtropical tree species following root pruning and nutrient addition treatments. After root pruning, species with thinner roots showed more root growth, but lower mycorrhizal colonization, than species with thicker roots. Under multi-nutrient (NPK) addition, root growth increased, but mycorrhizal colonization decreased significantly, whereas no significant changes were found under nitrogen or phosphate additions. Moreover, root length proliferation was mainly achieved by altering root architecture, but not root morphology. Thin-root species seem to forage nutrients mainly via roots, whereas thick-root species rely more on mycorrhizal fungi. In addition, the reliance on mycorrhizal fungi was reduced by nutrient additions across all species. These findings highlight complementary strategies for nutrient foraging across coexisting species with contrasting root traits.


Asunto(s)
Micorrizas/crecimiento & desarrollo , Nitrógeno/metabolismo , Fósforo/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Potasio/metabolismo , Suelo/química , Árboles/fisiología , Clima , Hongos , Raíces de Plantas/anatomía & histología , Raíces de Plantas/microbiología , Microbiología del Suelo , Árboles/crecimiento & desarrollo , Árboles/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA