Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Med Biol ; 59(19): 5691-706, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25198916

RESUMEN

The purpose of this study was to validate the use of a single shaped filter (SF) for computed tomography (CT) using variable source-to-filter distance (SFD) for the examination of different object diameters.A SF was designed by performing simulations with the purpose of achieving noise homogeneity in the reconstructed volume and dose reduction for arbitrary phantom diameters. This was accomplished by using a filter design method thats target is to achieve a homogeneous detector noise, but also uses a correction factor for the filtered back projection process. According to simulation results, a single SF designed for one of the largest phantom diameters meets the requirements for all diameters when SFD can be adjusted. To validate these results, a SF made of aluminium alloy was manufactured. Measurements were performed on a CT scanner with polymethyl methacrylate (PMMA) phantoms of diameters from 40-100 mm. The filter was positioned at SFDs ranging from 97-168 mm depending on the phantom diameter. Image quality was evaluated for the reconstructed volume by assessing CT value accuracy, noise homogeneity, contrast-to-noise ratio weighted by dose (CNRD) and spatial resolution. Furthermore, scatter distribution was determined with the use of a beam-stop phantom. Dose was measured for a PMMA phantom with a diameter of 100 mm using a calibrated ionization chamber.The application of a single SF at variable SFD led to improved noise uniformity and dose reduction: noise homogeneity was improved from 15% down to about 0%, and dose was reduced by about 37%. Furthermore, scatter dropped by about 32%, which led to reduced cupping artifacts and improved CT value accuracy. Spatial resolution and CNRD was not affected by the SF.By means of a single SF with variable SFD designed for CT, significant dose reduction can be achieved and image quality can be improved by reducing noise inhomogeneity as well as scatter-induced artifacts.


Asunto(s)
Artefactos , Filtración/métodos , Fantasmas de Imagen , Tomógrafos Computarizados por Rayos X , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos , Calibración , Simulación por Computador , Humanos , Polimetil Metacrilato/química , Dosis de Radiación
2.
Phys Med Biol ; 58(12): 4205-23, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23715466

RESUMEN

The purpose of this study was to investigate the effect of shaped filters specifically designed for dedicated breast computed tomography (CT) scanners on dose and image quality. Optimization of filter shape and material in fan direction was performed using two different design methods, one aiming at homogeneous noise distributions in the CT images and the other aiming at a uniform dose distribution in the breast. The optimal filter thickness as a function of fan angle was determined iteratively to fulfil the above mentioned criteria for each breast diameter. Different filter materials (aluminium, copper, carbon, polytetrafluoroethylene) and breast phantoms with diameters between 80-180 mm were investigated. Noise uniformity in the reconstructed images, obtained from CT simulations based on ray-tracing methods, and dose in the breast, calculated with a Monte Carlo software tool, were used as figure of merit. Furthermore, CT-value homogeneity, the distribution of noise in cone direction, spatial resolution from centre to periphery and the contrast-to-noise ratio weighted by dose (CNRD) were evaluated. In addition, the decrease of scatter due to shaped filters was investigated. Since only few or one filter are practical in clinical CT systems, the effects of one shaped filter for different breast diameters were also investigated. In this case the filter, designed for the largest breast diameter, was simulated at variable source-to-filter distances depending on breast diameter. With the filter design method aiming at uniform noise distribution best results were obtained for aluminium as the filter material. Noise uniformity improved from 20} down to 5} and dose was reduced by about 30-40} for all breast diameters. No decrease of noise uniformity in cone direction, CT-value homogeneity, spatial resolution and the CNRD was detected with the shaped filter. However, a small improvement of CNRD was observed. Furthermore, a scatter reduction of about 20-30} and a more homogeneous scatter distribution were reached which led to reduced cupping artefacts. The simulations with one shaped filter at variable source-to-filter distance resulted in nearly homogeneous noise distributions and comparable dose reduction for all breast diameters. In conclusion, by means of shaped filters designed for breast CT, significant dose reduction can be achieved at unimpaired image quality. One shaped filter designed for the largest breast diameter used with variable source-to-filter distance appears to be the best solution for breast CT.


Asunto(s)
Mamografía/instrumentación , Dosis de Radiación , Diseño de Equipo , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Control de Calidad , Dispersión de Radiación , Relación Señal-Ruido
3.
Phys Med Biol ; 56(1): 39-56, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21119229

RESUMEN

In C-arm-based flat-detector computed tomography (FDCT) it frequently happens that the patient exceeds the scan field of view (SFOV) in the transaxial direction because of the limited detector size. This results in data truncation and CT image artefacts. In this work three truncation correction approaches for extended field-of-view (EFOV) reconstructions have been implemented and evaluated. An FDCT-based method estimates the patient size and shape from the truncated projections by fitting an elliptical model to the raw data in order to apply an extrapolation. In a camera-based approach the patient is sampled with an optical tracking system and this information is used to apply an extrapolation. In a CT-based method the projections are completed by artificial projection data obtained from the CT data acquired in an earlier exam. For all methods the extended projections are filtered and backprojected with a standard Feldkamp-type algorithm. Quantitative evaluations have been performed by simulations of voxelized phantoms on the basis of the root mean square deviation and a quality factor Q (Q = 1 represents the ideal correction). Measurements with a C-arm FDCT system have been used to validate the simulations and to investigate the practical applicability using anthropomorphic phantoms which caused truncation in all projections. The proposed approaches enlarged the FOV to cover wider patient cross-sections. Thus, image quality inside and outside the SFOV has been improved. Best results have been obtained using the CT-based method, followed by the camera-based and the FDCT-based truncation correction. For simulations, quality factors up to 0.98 have been achieved. Truncation-induced cupping artefacts have been reduced, e.g., from 218% to less than 1% for the measurements. The proposed truncation correction approaches for EFOV reconstructions are an effective way to ensure accurate CT values inside the SFOV and to recover peripheral information outside the SFOV.


Asunto(s)
Protección Radiológica/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Tamaño Corporal , Cabeza/diagnóstico por imagen , Cadera/diagnóstico por imagen , Humanos , Fantasmas de Imagen , Radiografía Torácica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Hombro/diagnóstico por imagen , Tomografía Computarizada por Rayos X/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA