Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 279(8): 6893-904, 2004 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-14638680

RESUMEN

Small conductance Ca2+-activated K+ channels, products of the SK1-SK3 genes, regulate membrane excitability both within and outside the nervous system. We report the characterization of a SK3 variant (SK3-1C) that differs from SK3 by utilizing an alternative first exon (exon 1C) in place of exon 1A used by SK3, but is otherwise identical to SK3. Quantitative RT-PCR detected abundant expression of SK3-1C transcripts in human lymphoid tissues, skeletal muscle, trachea, and salivary gland but not the nervous system. SK3-1C did not produce functional channels when expressed alone in mammalian cells, but suppressed SK1, SK2, SK3, and IKCa1 channels, but not BKCa or KV channels. Confocal microscopy revealed that SK3-1C sequestered SK3 protein intracellularly. Dominant-inhibitory activity of SK3-1C was not due to a nonspecific calmodulin sponge effect since overexpression of calmodulin did not reverse SK3-1C-mediated intracellular trapping of SK3 protein, and calmodulin-Ca2+-dependent inactivation of CaV channels was not affected by SK3-1C overexpression. Deletion analysis identified a dominant-inhibitory segment in the SK3-1C C terminus that resembles tetramerization-coiled-coiled domains reported to enhance tetramer stability and selectivity of multimerization of many K+ channels. SK3-1C may therefore suppress calmodulin-gated SKCa/IKCa channels by trapping these channel proteins intracellularly via subunit interactions mediated by the dominant-inhibitory segment and thereby reduce functional channel expression on the cell surface. Such family-wide dominant-negative suppression by SK3-1C provides a powerful mechanism to titrate membrane excitability and is a useful approach to define the functional in vivo role of these channels in diverse tissues by their targeted silencing.


Asunto(s)
Canales de Potasio/genética , Canales de Potasio/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Calmodulina/metabolismo , Línea Celular , ADN Complementario/metabolismo , Exones , Eliminación de Gen , Silenciador del Gen , Genes Dominantes , Proteínas Fluorescentes Verdes , Células Madre Hematopoyéticas/metabolismo , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Intrones , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Modelos Genéticos , Datos de Secuencia Molecular , Músculos/metabolismo , Células PC12 , Técnicas de Placa-Clamp , Canales de Potasio Calcio-Activados/genética , Canales de Potasio Calcio-Activados/fisiología , Isoformas de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Transducción de Señal , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Distribución Tisular , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA