Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioresour Technol ; 368: 128337, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36403915

RESUMEN

This study established an integrated loach-plant-substrate-microbes non-aerated saturated vertical flow constructed wetlands (VFCWs) to enhance pollutants removal efficiencies and reduce greenhouse gas emissions simultaneously. The results of the VFCWs experiment indicated that the removal efficiencies of chemical oxygen demand, total phosphorous, and total nitrogen in loach systems were significantly higher than those of non-loach systems, achieving 59.16%, 35.98%, and 40.96%, respectively. The CH4 and N2O emission fluxes were also significantly reduced in the integrated system, resulting in lower global warming potential (GWP) and GWP per unit of pollutants removal. Loaches promoted the transportation of oxygen, facilitated the re-contact and utilization of sediments, reduced CH4 emission, and enhanced nitrogen conversion and phosphorus accumulation. Increased bioavailable carbon and nitrate-nitrogen in the integrated system improved the abundance of denitrifying bacteria, which supported complete denitrification, reducing N2O emissions with high pollutant removal.


Asunto(s)
Cipriniformes , Contaminantes Ambientales , Gases de Efecto Invernadero , Animales , Humedales , Nitrógeno , Fósforo
2.
Chemosphere ; 284: 131391, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34328082

RESUMEN

Effective removal and recovery of phosphorus (P) from the aquatic environment was of great significance for eutrophication control and P recovery. This study investigated the effects of different environmental conditions on P adsorption by biochar (BC) and the feasibility of applying the P-laden BC as a fertilizer for plant growth. The nano zero-valent iron (nZVI) modified reeds BC prepared at 700 °C (Fe-700-BC) had the maximum P adsorption capacity of 95.2 mg g-1, which was higher than those prepared at 300, 500, and 900 °C. The addition of Fe-700-BC reduced the concentration of total phosphorus (TP) in the overlying water, in which the soluble reactive phosphorus (SRP) almost completely removed, as well as had a certain inhibitory effect on the growth of algae. Simultaneously, Fe-700-BC reduced the contents of different fractions of P (weakly adsorbed inorganic phosphorus (WA-Pi), potential active inorganic phosphorus (PA-Pi), and Fe/Al-bound inorganic phosphorus (Fe/Al-Pi)) by adsorbing the soluble P released from the sediments, especially in the case of disturbance. Fe-700-BC had no significant effect on the diversity and richness of the microbial community in the sediment. Moreover, P-laden BC was safe and environmentally friendly for application in the soil and tended to increase stem and root length, fresh and dry weight at low doses (0.5 wt%) in wheat planting experiments. The present work could provide a reference for solving the problems related to eutrophication and P deficiency.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Carbón Orgánico , Hierro/análisis , Agua , Contaminantes Químicos del Agua/análisis
3.
Bioresour Technol ; 309: 123358, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32315916

RESUMEN

The performance of eological floating bed (EFB) with novel carbon source (CS) and reed biochar substrate (RBS) derived from reed straw (RS) was evaluated for the advanced treatment of effluent from wastewater treatment plants (WWTPs). The average carbon releasing capacity of CS was 4.50 mg/g, and the P adsorption capacity of RBS was 0.39 mg/g. The additional CS and RBS increased the average removal efficiencies of total nitrogen (TN) and total phosphorus (TP) by 57.6% and 46.7%, respectively. Furthermore, the high-throughput sequencing results revealed significantly different microbial species richness and diversity due to the CS and RBS. Some genera related to nitrogen removal, such as Pseudomonas, Rhodobacter, Hydrogenophaga, Bradyrhizobium, Acinetobacter and Thiobacillus, were enriched in the EFB with CS and RBS. This study provided a suitable method for effectively treating low C/N wastewater such as WWTPs effluent using EFB strengthened by processed wetland plant.


Asunto(s)
Fósforo , Aguas Residuales , Carbono , Nitrógeno , Eliminación de Residuos Líquidos , Humedales
4.
Environ Pollut ; 257: 113596, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31771931

RESUMEN

ZnO nanoparticles (NPs) have been detected in various wastewater treatment plants. It is widely assumed that size has a crucial effect on the NPs toxicity. Concerns have been raised over probable size-dependent toxicity of ZnO NPs to activated sludge, which could eventually affect the treatment efficiencies of wastewater treatment facilities. The size-dependent influences of ZnO NPs on performance, microbial activities, and extracellular polymeric substances (EPS) from activated sludge were examined in sequencing batch reactor (SBR) in present study. Three different sizes (15, 50, and 90 nm) and five concentrations (2, 5, 10, 30, and 60 mg L-1) were trialled. The inhibitions on COD and nitrogen removal were determined by the particle size, and smaller ZnO NPs (15 nm) showed higher inhibition effect than those of 50 and 90 nm, whereas the ZnO NPs with size of 50 nm showed maximum inhibition effect on phosphorus removal among three sizes of ZnO NPs. After exposure to different sized ZnO NPs, microbial enzymatic activities and removal rates of activated sludge represented the same trend, consistent with the nitrogen and phosphorus removal efficiency. In addition, apparent size- and concentration-dependent effects on EPS contents and components were also observed. Compared with the absence of ZnO NPs, 60 mg L-1 ZnO NPs with sizes of 15, 50, and 90 nm increased the EPS contents from 92.5, 92.4, and 92.0 mg g-1 VSS to 277.5, 196.8, and 178.2 mg g-1 VSS (p < 0.05), respectively. The protein and polysaccharide contents increased with the decreasing particle sizes and increasing ZnO NPs concentrations, and the content of protein was always higher than that of polysaccharide.


Asunto(s)
Bacterias/efectos de los fármacos , Bacterias/enzimología , Matriz Extracelular de Sustancias Poliméricas/química , Microbiota/efectos de los fármacos , Óxido de Zinc/química , Óxido de Zinc/toxicidad , Reactores Biológicos , Activación Enzimática/efectos de los fármacos , Nanopartículas , Nitrógeno/análisis , Fósforo/metabolismo , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales/química
5.
Mar Pollut Bull ; 148: 194-201, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31430706

RESUMEN

The utilization of phosphorus by algae in the low-phosphorus state has drawn wide concerns due to the high risk of forming algal blooms. The cyanobacteria Microcystis aeruginosa (M. aeruginosa) grew well under low-phosphorus condition by hydrolyzing dissolved organic phosphorus (DOP) to dissolved inorganic phosphorus (DIP) through alkaline phosphatase (AP). There was a negative correlation between DIP concentration and AP activity of algae. AP activity significantly increased at 0-3 d (p < 0.05), and reached the peak values of 43.06 and 49.11 King unit/gprot on day 5 for DIP (0.1 mg/L) and DOP (4.0 mg/L), respectively. The relative expression of phosphate transporter gene increased with decreasing phosphorus concentrations. The catalase activity under low-phosphorus condition increased significantly (p < 0.05) after one week, and was generally higher than 0.15 U/mgprot on day 14. Understanding the utilization efficiency and mechanism of DIP and DOP in the low-phosphorus state would help to inhibit the formation of algal blooms.


Asunto(s)
Microcystis/crecimiento & desarrollo , Fósforo/análisis , Fosfatasa Alcalina/metabolismo , Proteínas Bacterianas/metabolismo , Eutrofización , Microcystis/enzimología , Microcystis/metabolismo , Fósforo/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA