Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Front Nutr ; 10: 1125106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415912

RESUMEN

Introduction: Dietary medicinal plants are among the most sought-after topics in alternative medicine today due to their preventive and healing properties against many diseases. Aim: This study aimed to extract and determine the polyphenols from indigenous plants extracts, i.e., Mentha longifolia, M. arvensis, Tinospora cordifolia, Cymbopogon citratus, Foeniculum vulgare, Cassia absus, Camellia sinensis, Trachyspermum ammi, C. sinensis and M. arvensis, then evaluate the antioxidant, cytotoxicity, and antimicrobial properties, besides enzyme inhibition of isolated polyphenols. Methods: The antioxidant activity was evaluated by DPPH, Superoxide radical, Hydroxyl radical (OH.), and Nitric oxide (NO.) scavenging activity; the antidiabetic activity was evaluated by enzymatic methods, and anticancer activity using MTT assay, while the antibacterial activity. Results: The results showed that tested medicinal plants' polyphenolic extracts (MPPE) exhibited the most significant antioxidant activity in DPPH, hydroxyl, nitric oxide, and superoxide radical scavenging methods because of the considerable amounts of total polyphenol and flavonoid contents. UHPLC profile showed twenty-five polyphenol complexes in eight medicinal plant extracts, categorized into phenolic acids, flavonoids, and alkaloids. The main polyphenol was 3-Feroylquinic acid (1,302 mg/L), also found in M. longifolia, C. absus, and C. sinensis, has a higher phenolic content, i.e., rosmarinic acid, vanillic acid, chlorogenic acid, p-coumaric acid, ferulic acid, gallic acid, catechin, luteolin, 7-O-neohesperideside, quercetin 3,7-O-glucoside, hesperidin, rutin, quercetin, and caffeine in the range of (560-780 mg/L). At the same time, other compounds are of medium content (99-312 mg/L). The phenolics in C. sinensis were 20-116% more abundant than those in M. longifolia, C. absus, and other medicinal plants. While T. cordifolia is rich in alkaloids, T. ammi has a lower content. The MTT assay against Caco-2 cells showed that polyphenolic extracts of T. ammi and C. citratus had maximum cytotoxicity. While M. arvensis, C. sinensis, and F. vulgare extracts showed significant enzyme inhibition activity, C. sinensis showed minor inhibition activity against α-amylase. Furthermore, F. vulgare and C. sinensis polyphenolic extracts showed considerable antibacterial activity against S. aureus, B. cereus, E. coli, and S. enterica. Discussion: The principal component analysis demonstrated clear separation among medicinal plants' extracts based on their functional properties. These findings prove the therapeutic effectiveness of indigenous plants and highlight their importance as natural reserves of phytogenic compounds with untapped potential that needs to be discovered through advanced analytical methods.

2.
Molecules ; 28(9)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37175255

RESUMEN

The objective of the study is to evaluate the chemical characterisation, and biological and in silico potential of Haloxylon stocksii (Boiss.) Benth, an important halophyte commonly used in traditional medicine. The research focuses on the roots and aerial parts of the plant and extracts them using two solvents: methanol and dichloromethane. Chemical characterisation of the extracts was carried out using total phenolic contents quantification, GC-MS analysis, and LC-MS screening. The results exhibited that the aerial parts of the plant have significantly higher total phenolic content than the roots. The GC-MS and LC-MS analysis of the plant extracts revealed the identification of 18 bioactive compounds in each. The biological evaluation was performed using antioxidant, antibacterial, and in vitro antidiabetic assays. The results exhibited that the aerial parts of the plant have higher antioxidant and in vitro antidiabetic activity than the roots. Additionally, the aerial parts of the plant were most effective against Gram-positive bacteria. Molecular docking was done to evaluate the binding affinity (BA) of the bioactive compounds characterised by GC-MS with diabetic enzymes used in the in vitro assay. The results showed that the BA of γ-sitosterol was better than that of acarbose, which is used as a standard in the in vitro assay. Overall, this study suggests that the extract from aerial parts of H. stocksii using methanol as a solvent have better potential as a new medicinal plant and can provide a new aspect to develop more potent medications. The research findings contribute to the scientific data of the medicinal properties of Haloxylon stocksii and provide a basis for further evaluation of its potential as a natural remedy.


Asunto(s)
Hipoglucemiantes , Metanol , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Metanol/química , Antioxidantes/farmacología , Antioxidantes/química , Plantas Tolerantes a la Sal , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/química , Solventes/química , Fenoles , Antibacterianos/farmacología , Fitoquímicos/farmacología
3.
Food Chem X ; 18: 100692, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37151212

RESUMEN

In this work, an egg yolk protein hydrolysate (EYPH) with a high iron-chelating ability (87.32%) was prepared. The fractionation using 60% (v/v) ethanol concentration (E3 fraction) led to the efficiently accumulating the iron-chelating peptides in EYPH. The characterization results showed that iron mainly chelated with carboxyl, amino and phosphate groups of peptides. From E3 fraction, six iron-chelating peptides with MW ranging from 1372.36 to 2937.04 Da were identified and a hypothesized molecular model of DDSSSpSpSpSpSpSVLSK-Fe was simulated. In vitro stability determination showed that E3-Fe chelate owned a good heat, alkalinity and digestion tolerance, but a relatively bad acid tolerance. Finally, iron transport analysis showed that iron in the E3-Fe would be absorbed in caco-2 cell membrane more effectively than that of iron salts, indicating that it was possible to apply the E3-Fe complex as iron supplements.

4.
Food Funct ; 14(5): 2286-2303, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36820797

RESUMEN

Lignans are known dietary polyphenols found in cereals, plants and seeds. Flaxseed is one of the major sources of lignans mainly existing in the form of secoisolariciresinol diglucoside (SDG) which can be metabolised by the gut microbes into secoisolariciresinol (SECO) and mammalian lignan (enterodiol and enterolactone) that are easily absorbed through the intestines. Numerous studies reveal that flaxseed lignans (FLs) can be promising chemotherapeutics/chemopreventive agents. Their anticancer activity can occur through the induction of apoptosis, inhibition of cell proliferation, and the hindering of metastasis and angiogenesis. The anti-carcinogenesis of flaxseed lignans is achieved through multiple molecular mechanisms involving biochemical entities such as cellular kinases, cell cycle mediators, transcription factors, inflammatory cytokines, reactive oxygen species, and drug transporters. This review summarizes the bioavailability of FLs, their anticancer mechanisms in relevance to molecular targets, safety, and the scope of future research. Overall, FLs can be utilized in functional foods, dietary supplements, and pharmaceuticals for the management and prevention of cancers.


Asunto(s)
Lino , Lignanos , Animales , Lino/química , Suplementos Dietéticos , 4-Butirolactona , Mamíferos/metabolismo , Semillas/química , Butileno Glicoles/química , Lignanos/química
5.
Molecules ; 27(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36235221

RESUMEN

Verbena officinalis L. is a traditionally important medicinal herb that has a rich source of bioactive phytoconstituents with biological benefits. The objective of this study was to assess the metabolic profile and in vitro biological potential of V. officinalis. The bioactive phytoconstituents were evaluated by preliminary phytochemical studies, estimation of polyphenolic contents, and gas chromatography-mass spectrometry (GC-MS) analysis of all fractions (crude methanolic, n-hexane, ethyl acetate, and n-butanol) of V. officinalis. The biological investigation was performed by different assays including antioxidant assays (DPPH, ABTS, CUPRAC, and FRAP), enzyme inhibition assays (urease and α-glucosidase), and hemolytic activity. The ethyl acetate extract had the maximum concentration of total phenolic and total flavonoid contents (394.30 ± 1.09 mg GAE·g-1 DE and 137.35 ± 0.94 mg QE·g-1 DE, respectively). Significant antioxidant potential was observed in all fractions by all four antioxidant methods. Maximum urease inhibitory activity in terms of IC50 value was shown by ethyl acetate fraction (10 ± 1.60 µg mL-1) in comparison to standard hydroxy urea (9.8 ± 1.20 µg·mL-1). The n-hexane extract showed good α-glucosidase inhibitory efficacy (420 ± 20 µg·mL-1) as compared to other extract/fractions. Minimum hemolytic activity was found in crude methanolic fraction (6.5 ± 0.94%) in comparison to positive standard Triton X-100 (93.5 ± 0.48%). The GC-MS analysis of all extract/fractions of V. officinalis including crude methanolic, n-hexane, ethyl acetate, and n-butanol fractions, resulted in the identification of 24, 56, 25, and 9 bioactive compounds, respectively, with 80% quality index. Furthermore, the bioactive compounds identified by GC-MS were analyzed using in silico molecular docking studies to determine the binding affinity between ligands and enzymes (urease and α-glucosidase). In conclusion, V. officinalis possesses multiple therapeutical potentials, and further research is needed to explore its use in the treatment of chronic diseases.


Asunto(s)
Antioxidantes , Verbena , 1-Butanol , Acetatos , Antioxidantes/química , Flavonoides/química , Cromatografía de Gases y Espectrometría de Masas , Hexanos , Ligandos , Metanol/química , Simulación del Acoplamiento Molecular , Octoxinol/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Urea/análisis , Ureasa , alfa-Glucosidasas
6.
Molecules ; 27(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36234922

RESUMEN

Dietary interventions have captured the attention of nutritionists due to their health-promoting aspects, in addition to medications. In this connection, supplementation of nutraceuticals is considered as a rational approach to alleviating various metabolic disorders. Among novel strategies, prebiotic-supplemented foods are an encouraging trend in addressing the issue. In the present investigation, prebiotic fructooligosaccharides (FOS) were extracted from garlic (Allium sativum L.) powder using ultrasound-assisted extraction (UAE). The response surface methodology (RSM) was used to optimize the independent sonication variables, i.e., extraction temperature (ET, 80, 90, and 100 °C), amplitude level (AL, 70, 80, and 90%) and sonication time (ST, 10, 15 and 20 min). The maximum FOS yield (6.23 ± 0.52%) was obtained at sonication conditions of ET (80 °C), AL (80%) and ST (10 min), while the minimum yield of FOS was obtained at high operating temperatures and time. The optimized FOS yield (7.19%) was obtained at ET (80 °C), AL (73%) and ST (15 min) after model validation. The influence of sonication parameters, i.e., ET, AL and ST, on FOS yield was evaluated by varying their coded levels from -1 to +1, respectively, for each independent variable. High-performance liquid chromatography with refractive index detector (HPLC-RID) detection and quantification indicated that sucrose was present in high amounts (2.06 ± 0.10 g/100 g) followed by fructose and glucose. Total FOS fractions which included nystose present in maximum concentration (526 ± 14.7 mg/100 g), followed by 1-kestose (428 ± 19.5 mg/100 g) and fructosylnystoses (195 ± 6.89 mg/100 g). Conclusively, garlic is a good source of potential prebiotics FOS and they can be extracted using optimized sonication parameters using ultrasound-assisted techniques with maximum yield percentage.


Asunto(s)
Ajo , Antioxidantes , Cromatografía Líquida de Alta Presión/métodos , Fructosa , Ajo/química , Glucosa , Oligosacáridos , Polvos , Prebióticos , Refractometría , Sacarosa
7.
Molecules ; 27(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36144719

RESUMEN

Emulgel is a new innovatory technique for drug development permitting controlled release of active ingredients for topical administration. We report a stable emulgel of 4% Piper nigrum extract (PNE) prepared using 80% ethanol. The PNE-loaded formulation had an antioxidant activity of 84% and tyrosinase inhibition was 82%. Prepared formulation rendered spherical-shaped globules with high zeta potential (-45.5 mV) indicative of a stable system. Total phenolic contents were 58.01 mg GAE/g of dry extract whereas total flavonoid content was 52.63 mg QE/g of dry extract. Sun protection factor for PNE-loaded emulgel was 7.512 and formulation was stable without any evidence of physical and chemical changes following 90 days of storage. Gas chromatography-mass spectroscopy (GC-MS) revealed seventeen bioactive compounds in the PNE including monoterpenoids, triterpenoids, a tertiary alcohol, fatty acid esters, and phytosterols. In silico studies of GC-MS identified compounds show higher binding affinity in comparison to standard kojic acid indicating tyrosinase inhibition. It can be concluded that PNE-loaded emulgel had prominent antioxidant and tyrosinase inhibition and can be utilized as a promising topical system for anti-aging skin formulation.


Asunto(s)
Fitosteroles , Piper nigrum , Triterpenos , Alérgenos , Antioxidantes/química , Antioxidantes/farmacología , Preparaciones de Acción Retardada , Etanol , Alcoholes Grasos , Flavonoides , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Monoterpenos , Piper nigrum/química , Extractos Vegetales/química , Semillas
8.
Front Vet Sci ; 9: 918961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118334

RESUMEN

Poultry production contributes markedly to bridging the global food gap. Many nations have limited the use of antibiotics as growth promoters due to increasing bacterial antibiotic tolerance/resistance, as well as the presence of antibiotic residues in edible tissues of the birds. Consequently, the world is turning to use natural alternatives to improve birds' productivity and immunity. Withania somnifera, commonly known as ashwagandha or winter cherry, is abundant in many countries of the world and is considered a potent medicinal herb because of its distinct chemical, medicinal, biological, and physiological properties. This plant exhibits antioxidant, cardioprotective, immunomodulatory, anti-aging, neuroprotective, antidiabetic, antimicrobial, antistress, antitumor, hepatoprotective, and growth-promoting activities. In poultry, dietary inclusion of W. somnifera revealed promising results in improving feed intake, body weight gain, feed efficiency, and feed conversion ratio, as well as reducing mortality, increasing livability, increasing disease resistance, reducing stress impacts, and maintaining health of the birds. This review sheds light on the distribution, chemical structure, and biological effects of W. somnifera and its impacts on poultry productivity, livability, carcass characteristics, meat quality, blood parameters, immune response, and economic efficiency.

9.
Ultrason Sonochem ; 86: 105999, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35436672

RESUMEN

Fruit juices (FJs) are frequently taken owing to their nutritious benefits, appealing flavour, and vibrant colour. The colours of the FJs are critical indicators of the qualitative features that influence the consumer's attention. Although FJs' intrinsic acidity serves as a barrier to bacterial growth, their enzymatic stability remains an issue for their shelf life. Inactivation of enzymes is critical during FJ processing, and selective inactivation is the primary focus of enzyme inactivation. The merchants, on the other hand, want the FJs to stay stable. The most prevalent technique of processing FJ is by conventional heat treatment, which degrades its nutritive value and appearance. The FJ processing industry has undergone a dramatic transformation from thermal treatments to nonthermal treatments (NTTs) during the past two decades to meet the requirements for microbiological and enzymatic stability. The manufacturers want safe and stable FJs, while buyers want high-quality FJs. According to the past investigation, NTTs have the potential to manufacture microbiologically safe and enzymatically stable FJs with low loss of bioactive components. Furthermore, it has been demonstrated that different NTTs combined with or without other NTTs or mild heating as a hurdle technology increase the synergistic effect for microbiological safety and stability of FJs. Concise information about the variables that affect NTTs' action mode has also been addressed. Primary inactivates enzymes by modifying the protein structure and active site conformation. NTTs may increase enzyme activity depending on the nature of the enzyme contained in FJs, the applied pressure, pH, temperature, and treatment period. This is due to the release of membrane-bound enzymes as well as changes in protein structure and active sites that allow substrate interaction. Additionally, the combination of several NTTs as a hurdle technology, as well as temperature and treatment periods, resulted in increased enzyme inactivation in FJs. Therefore, a combination of thermal and non-thermal technologies is suggested to increase the effectiveness of the process as well as preserve the juice quality.


Asunto(s)
Manipulación de Alimentos , Jugos de Frutas y Vegetales , Manipulación de Alimentos/métodos , Frutas/química , Calor , Valor Nutritivo , Gusto
10.
Molecules ; 27(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35163870

RESUMEN

Egg white protein (EWP) is susceptible to denaturation and coagulation when exposed to high temperatures, adversely affecting its flavour, thereby influencing consumers' decisions. Here, we employ high-voltage cold plasma (HVCP) as a novel nonthermal technique to investigate its influence on the EWP's flavour attributes using E-nose, E-tongue, and headspace gas-chromatography-ion-mobilisation spectrometry (HS-GC-IMS) due to their rapidness and high sensitivity in identifying flavour fingerprints in foods. The EWP was investigated at 0, 60, 120, 180, 240, and 300 s of HVCP treatment time. The results revealed that HVCP significantly influences the odour and taste attributes of the EWP across all treatments, with a more significant influence at 60 and 120 s of HVCP treatment. Principal component analyses of the E-nose and E-tongue clearly distinguish the odour and taste sensors' responses. The HS-GC-IMS analysis identified 65 volatile compounds across the treatments. The volatile compounds' concentrations increased as the HVCP treatment time was increased from 0 to 300 s. The significant compounds contributing to EWP characterisation include heptanal, ethylbenzene, ethanol, acetic acid, nonanal, heptacosane, 5-octadecanal, decanal, p-xylene, and octanal. Thus, this study shows that HVCP could be utilised to modify and improve the EWP flavour attributes.


Asunto(s)
Proteínas del Huevo/análisis , Proteínas del Huevo/química , Nariz Electrónica , Aromatizantes/análisis , Aromatizantes/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Gases em Plasma/farmacología , Animales , Microextracción en Fase Sólida/métodos , Gusto , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química
11.
Nanotechnology ; 32(50)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34469878

RESUMEN

Borage seed oil (BSO), peppermint oil (PO) and lycopene (LC) have accomplished a lot of interest due to their therapeutic benefits in the food and pharmaceutical sectors. However, their employment in functional food products and dietary supplements is still precluded by their high susceptibility to oxidation. Thus, the encapsulation can be applied as a promising strategy to overcome these limits. In the present study, doubly layered water/oil/water (W/O/W) nanoemulsions were equipped using purity gum ultra (PGU), soy protein isolate (SPI), pectin (PC), whey protein isolate (WPI) and WPI-PC and SPI-PC complexes, and their physico-chemical properties were investigated. Our aim was to investigate the influence of natural biopolymers as stabilizers on the physicochemical properties of nanoemulsified BSO, PO and lycopene thru W/O/W emulsions. The droplet size of the fabricated emulsions coated with PGU, WPI, SPI, PC, WPI-PC, and SPI-PC was 156.2, 265.9, 254.7, 168.5, 559.5 and 656.1 nm, correspondingly. The encapsulation efficiency of the entrapped bioactives for powders embedded by PGU, WPI, SPI, PC, WPI-PC, and SPI-PC was 95.21%, 94.67%, 97.24%, 92.19%, 90.07% and 92.34%, respectively. In addition, peroxide and p-anisidine values were used to measure the antioxidant potential of the entrapped bioactive compounds during storage, which was compared to synthetic antioxidant and bare natural antioxidant. The collected findings revealed that oxidation occurred in oils encompassing entrapped bioactive compounds, but at a lower extent than for non-encapsulated bioactives. In summary, the findings obtained from current research prove that the nanoencapsulation of BSO surrounded by innermost aqueous stage of W/O/W improved its stability as well as allowed a controlled release of the entrapped bioactives. Thus, the obtained BSO-PO-based systems could be successfully used for further fortification of food-stuffs.

12.
Int J Biol Macromol ; 186: 820-828, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34280445

RESUMEN

Recently, food industries are directing on the promotion of innovative food matrices fortified with bioactive compounds in order to enhance the consumer's health. Octenyl succinic anhydride modified starches (OSA-MS) such as Hi-cap100 (HCP) and purity gum 2000 (PUG) were used to fabricate emulsions co-entrapped with borage seed oil (BSO), resveratrol (RES) and curcumin (CUR), which were further spray dried to obtain powders. The fabricated microcapsules loaded with BSO, RES, and CUR displayed excellent dissolution performance, high encapsulation efficiency (≈93.05%) as well as semi-spherical shape, revealed via scanning electron microscopy (SEM). We also evaluated the impact of storage time (4 weeks) and temperature (40 °C) on the physicochemical characterization of OSA-MS coated microcapsules. Microcapsules coated with HCP exhibited greater oxidative stability, lower water activity and moisture contents rather than PUG coated microcapsules during storage because of its good film-forming properties. Addition of CUR enhanced the oxidative stability and retention of bioactive compounds. HCP microcapsules loaded with BSO + RES + CUR presented supreme retention of RES (70.32%), CUR 81.6% and γ-linolenic acid (≈ 96%). Our findings showed that CUR acted as an antioxidant agent; also, lower molecular weight OSA-MS as wall material could be used for the entrapment of bioactive compounds and promotion of innovative food products.


Asunto(s)
Antioxidantes/química , Curcumina/química , Portadores de Fármacos , Nanopartículas , Aceites de Plantas/química , Resveratrol/química , Almidón/química , Ácido gammalinolénico/química , Composición de Medicamentos , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Emulsiones , Nanotecnología , Oxidación-Reducción , Polvos , Secado por Pulverización , Almidón/análogos & derivados , Factores de Tiempo
13.
Crit Rev Food Sci Nutr ; 59(2): 253-275, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-28820277

RESUMEN

During the last years, phospholipids (PLs) have attracted great attention because of their crucial roles in providing nutritional values, technological and medical applications. There are considerable proofs that PLs have unique nutritional benefits on human health, such as reducing cholesterol absorption, improving liver functions, and decreasing the risk of cardiovascular diseases. PLs are the main structural lipid components of cell and organelle membranes in all living organisms, and therefore, they occur in all organisms and the derived food products. PLs are distinguished by the presence of a hydrophilic head and a hydrophobic tail, consequently they possess amphiphilic features. Due to their unique characteristics, the extraction, separation, and identification of PLs are critical issues to be concerned. This review is focused on the content of PLs classes in several sources (including milk, vegetable oils, egg yolk, and mitochondria). As well, it highlights PLs biosynthesis, and the methodologies applied for PLs extraction and separation, such as solvent extraction and solid-phase extraction. In addition, the determination and quantification of PLs classes by using thin layer chromatography, high-performance liquid chromatography coupled with different detectors, and nuclear magnetic resonance spectroscopy techniques.


Asunto(s)
Promoción de la Salud , Fosfolípidos/fisiología , Animales , Cromatografía/métodos , Productos Lácteos/análisis , Dieta , Yema de Huevo/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética/métodos , Leche/química , Mitocondrias/química , Valor Nutritivo , Fosfolípidos/análisis , Fosfolípidos/biosíntesis , Aceites de Plantas/química , Tensoactivos
14.
Food Funct ; 9(3): 1747-1754, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29497729

RESUMEN

Breast milk consumption reduces the incidence of necrotizing enterocolitis (NEC) in preterm infants compared to formula. Branched-chain fatty acids (BCFAs) are present in breast milk but not in most formulas intended for preterm infants. We aimed to determine the composition of BCFAs in the breast milk of mothers with preterm infants, and to understand the impact of gestational age at birth and stage of lactation on BCFA content. The main BCFAs in preterm breast milk were iso-14:0, iso-15:0, anteiso-15:0, iso-16:0, iso-17:0, and anteiso-17:0. Breast milk BCFAs as a percent of total fatty acids (g per 100 g, %) were significantly different across lactation stages, with the highest concentration in colostrum, followed by transitional and mature breast milk (median: 0.41, 0.31, and 0.28%, respectively, p < 0.05). Lower BCFAs in preterm breast milk compared to term breast milk may have been related to maternal intake, or the ability of the mammary gland to extract BCFA from plasma, or differences in mammary gland BCFA synthesis. BCFAs were mainly in the sn-2 position (52-65%), similar to palmitic acid. Overall, preterm and term breast milk BCFAs were similar and showed specific concentration patterns, resembling 16:0 with respect to sn-2 positional distribution. BCFAs were reduced with lactation stage, similar to highly unsaturated fatty acids.


Asunto(s)
Ácidos Grasos/metabolismo , Leche Humana/química , Adulto , Calostro/química , Calostro/metabolismo , Ácidos Grasos/química , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido/metabolismo , Lactancia , Masculino , Leche Humana/metabolismo , Estructura Molecular , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA