Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 182(2): 739-755, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792147

RESUMEN

The triacylglycerols (TAGs; i.e. oils) that accumulate in plants represent the most energy-dense form of biological carbon storage, and are used for food, fuels, and chemicals. The increasing human population and decreasing amount of arable land have amplified the need to produce plant oil more efficiently. Engineering plants to accumulate oils in vegetative tissues is a novel strategy, because most plants only accumulate large amounts of lipids in the seeds. Recently, tobacco (Nicotiana tabacum) leaves were engineered to accumulate oil at 15% of dry weight due to a push (increased fatty acid synthesis)-and-pull (increased final step of TAG biosynthesis) engineering strategy. However, to accumulate both TAG and essential membrane lipids, fatty acid flux through nonengineered reactions of the endogenous metabolic network must also adapt, which is not evident from total oil analysis. To increase our understanding of endogenous leaf lipid metabolism and its ability to adapt to metabolic engineering, we utilized a series of in vitro and in vivo experiments to characterize the path of acyl flux in wild-type and transgenic oil-accumulating tobacco leaves. Acyl flux around the phosphatidylcholine acyl editing cycle was the largest acyl flux reaction in wild-type and engineered tobacco leaves. In oil-accumulating leaves, acyl flux into the eukaryotic pathway of glycerolipid assembly was enhanced at the expense of the prokaryotic pathway. However, a direct Kennedy pathway of TAG biosynthesis was not detected, as acyl flux through phosphatidylcholine preceded the incorporation into TAG. These results provide insight into the plasticity and control of acyl lipid metabolism in leaves.


Asunto(s)
Lípidos de la Membrana/metabolismo , Ingeniería Metabólica/métodos , Nicotiana/metabolismo , Hojas de la Planta/metabolismo , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Triglicéridos/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Metabolismo de los Lípidos , Redes y Vías Metabólicas , Microsomas/metabolismo , Nicotiana/genética , Triglicéridos/biosíntesis
2.
Planta ; 249(5): 1285-1299, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30610363

RESUMEN

MAIN CONCLUSION: In vivo and in vitro analyses of Euphorbiaceae species' triacylglycerol assembly enzymes substrate selectivity are consistent with the co-evolution of seed-specific unusual fatty acid production and suggest that many of these genes will be useful for biotechnological production of designer oils. Many exotic Euphorbiaceae species, including tung tree (Vernicia fordii), castor bean (Ricinus communis), Bernardia pulchella, and Euphorbia lagascae, accumulate unusual fatty acids in their seed oils, many of which have valuable properties for the chemical industry. However, various adverse plant characteristics including low seed yields, production of toxic compounds, limited growth range, and poor resistance to abiotic stresses have limited full agronomic exploitation of these plants. Biotechnological production of these unusual fatty acids (UFA) in high yielding non-food oil crops would provide new robust sources for these valuable bio-chemicals. Previous research has shown that expression of the primary UFA biosynthetic gene alone is not enough for high-level accumulation in transgenic seed oils; other genes must be included to drive selective UFA incorporation into oils. Here, we use a series of in planta molecular genetic studies and in vitro biochemical measurements to demonstrate that lysophosphatidic acid acyltransferases from two Euphorbiaceae species have high selectivity for incorporation of their respective unusual fatty acids into the phosphatidic acid intermediate of oil biosynthesis. These results are consistent with the hypothesis that unusual fatty acid accumulation arose in part via co-evolution of multiple oil biosynthesis and assembly enzymes that cooperate to enhance selective fatty acid incorporation into seed oils over that of the common fatty acids found in membrane lipids.


Asunto(s)
Aciltransferasas/metabolismo , Euphorbiaceae/enzimología , Euphorbiaceae/metabolismo , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Semillas/enzimología , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Ricinoleicos/metabolismo
3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1102-1103: 52-59, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30368043

RESUMEN

In this paper, we report a method for the separation of hydroxy fatty acid and non-hydroxy fatty acid containing neutral lipid classes via normal phase HPLC with UV detection on a PVA-Sil column. The hexane/isopropanol/methanol/water based method separates all the neutral lipids in 21 min, and subsequently flushes through the polar lipids by 27 min such that prefractionation of neutral and polar lipids are not required, and the column is re-equilibrated for the next run in 15 min, for a total run time of 45 min per sample. The separation was demonstrated at both 1.0 mL/min and 1.5 mL/min for added applicability for fraction collection or inline analysis. Separation of various hydroxy fatty acid containing lipids was demonstrated from three different plant species Ricinus communis, Physaria fendleri, and engineered Arabidopsis thaliana. Additionally, we have combined this method with an in-line liquid scintillation counter for the separation and quantification of 14C labeled lipids obtained from in vivo metabolic flux experiments conducted in the developing seeds of Arabidopsis thaliana.


Asunto(s)
Radioisótopos de Carbono/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Lípidos/aislamiento & purificación , Conteo por Cintilación/métodos , Radioisótopos de Carbono/análisis , Glicéridos/química , Glicéridos/aislamiento & purificación , Glicéridos/metabolismo , Hidroxilación , Marcaje Isotópico , Metabolismo de los Lípidos , Lípidos/química , Aceites de Plantas/química , Aceites de Plantas/aislamiento & purificación , Aceites de Plantas/metabolismo , Plantas/química , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA