Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Dev Comp Immunol ; 34(9): 935-44, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20399225

RESUMEN

Complementary (c)DNA encoding glutathione peroxidase (GPx) messenger (m)RNA of the tiger shrimp Penaeus monodon was obtained from haemocytes by a reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) method. The 1321-bp cDNA contained an open reading frame (ORF) of 564bp, a 69-bp 5'-untranslated region (UTR), and a 688-bp 3'-UTR containing a poly A tail and a conserved selenocysteine insertion sequence (SECIS) element. The molecular mass of the deduced amino acid (aa) sequence (188 aa) was 21.05kDa long with an estimated pI of 7.68. It contains a putative selenocysteine residue which is encoded by the unusual stop codon, (190)TGA(192), and forms the active site with residues Glu(75) and Trp(143). Comparison of amino acid sequences showed that tiger shrimp GPx is more closely related to vertebrate GPx1, in accordance with those in Litopenaeus vannamei and Macrobrachium rosenbergii. GPx cDNA was synthesised in lymphoid organ, gills, heart, haemocytes, the hepatopancreas, muscles, and intestines. After injected with either Photobacterium damsela or white spot syndrome virus (WSSV), the respiratory bursts of shrimp significantly increased in order to kill the pathogen, and induced increases in the activities of superoxide dismutase and GPx, and regulation in the expression of cloned GPx mRNA to protect cells against damage from oxidation. The GPx expression significantly increased at stage D(0/1), and then gradually decreased until stage C suggesting that the cloned GPx might play a role in the molt regulation of shrimp.


Asunto(s)
Infecciones por Virus ADN/enzimología , Regulación Enzimológica de la Expresión Génica , Glutatión Peroxidasa/metabolismo , Infecciones por Bacterias Gramnegativas/enzimología , Hemocitos/metabolismo , Photobacterium/inmunología , Virus del Síndrome de la Mancha Blanca 1/inmunología , Secuencia de Aminoácidos , Animales , Clonación Molecular , Infecciones por Virus ADN/genética , Infecciones por Virus ADN/inmunología , Perfilación de la Expresión Génica , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/inmunología , Glutatión Peroxidasa/aislamiento & purificación , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/inmunología , Hemocitos/inmunología , Hemocitos/patología , Datos de Secuencia Molecular , Muda/genética , Penaeidae , Photobacterium/patogenicidad , Filogenia , Estallido Respiratorio , Selenocisteína/genética , Selenocisteína/metabolismo , Activación Transcripcional , Virus del Síndrome de la Mancha Blanca 1/patogenicidad
2.
BMC Genomics ; 8: 120, 2007 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-17506900

RESUMEN

BACKGROUND: White spot syndrome (WSS) is a viral disease that affects most of the commercially important shrimps and causes serious economic losses to the shrimp farming industry worldwide. However, little information is available in terms of the molecular mechanisms of the host-virus interaction. In this study, we used an expressed sequence tag (EST) approach to observe global gene expression changes in white spot syndrome virus (WSSV)-infected postlarvae of Penaeus monodon. RESULTS: Sequencing of the complementary DNA clones of two libraries constructed from normal and WSSV-infected postlarvae produced a total of 15,981 high-quality ESTs. Of these ESTs, 46% were successfully matched against annotated genes in National Center of Biotechnology Information (NCBI) non-redundant (nr) database and 44% were functionally classified using the Gene Ontology (GO) scheme. Comparative EST analyses suggested that, in postlarval shrimp, WSSV infection strongly modulates the gene expression patterns in several organs or tissues, including the hepatopancreas, muscle, eyestalk and cuticle. Our data suggest that several basic cellular metabolic processes are likely to be affected, including oxidative phosphorylation, protein synthesis, the glycolytic pathway, and calcium ion balance. A group of immune-related chitin-binding protein genes is also likely to be strongly up regulated after WSSV infection. A database containing all the sequence data and analysis results is accessible at http://xbio.lifescience.ntu.edu.tw/pm/. CONCLUSION: This study suggests that WSSV infection modulates expression of various kinds of genes. The predicted gene expression pattern changes not only reflect the possible responses of shrimp to the virus infection but also suggest how WSSV subverts cellular functions for virus multiplication. In addition, the ESTs reported in this study provide a rich source for identification of novel genes in shrimp.


Asunto(s)
Perfilación de la Expresión Génica , Penaeidae/genética , Penaeidae/virología , Virus del Síndrome de la Mancha Blanca 1/fisiología , Actinas/genética , Animales , Secuencia de Bases , ADN Complementario/química , ADN Complementario/genética , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica , Biblioteca de Genes , Glucólisis/genética , Lectinas Tipo C/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA