Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1343738, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633754

RESUMEN

Background: Glycine is an integral component of the human detoxification system as it reacts with potentially toxic exogenous and endogenously produced compounds and metabolites via the glycine conjugation pathway for urinary excretion. Because individuals with obesity have reduced glycine availability, this detoxification pathway may be compromised. However, it should be restored after bariatric surgery because of increased glycine production. Objective: To examine the impact of obesity-associated glycine deficiency on the glycine conjugation pathway. We hypothesize that the synthesis rates of acylglycines from endogenous and exogenous sources are significantly reduced in individuals with obesity but increase after bariatric surgery. Methods: We recruited 21 participants with class III obesity and 21 with healthy weight as controls. At baseline, [1,2-13C2] glycine was infused to study the glycine conjugation pathway by quantifying the synthesis rates of several acylglycines. The same measurements were repeated in participants with obesity six months after bariatric surgery. Data are presented as mean ± standard deviation, and p-value< 0.05 is considered statistically significant. Results: Baseline data of 20 participants with obesity were first compared to controls. Participants with obesity were significantly heavier than controls (mean BMI 40.5 ± 7.1 vs. 20.8 ± 2.1 kg/m2). They had significantly lower plasma glycine concentration (168 ± 30 vs. 209 ± 50 µmol/L) and slower absolute synthesis rates of acetylglycine, isobutyrylglycine, tigylglycine, isovalerylglycine, and hexanoylglycine. Pre- and post-surgery data were available for 16 participants with obesity. Post-surgery BMI decreased from 40.9 ± 7.3 to 31.6 ± 6.0 kg/m2. Plasma glycine concentration increased from 164 ± 26 to 212 ± 38 µmol/L) and was associated with significantly higher rates of excretion of acetylglycine, isobutyrylglycine, tigylglycine, isovalerylglycine, and hexanoylglycine. Benzoic acid (a xenobiotic dicarboxylic acid) is excreted as benzoylglycine; its synthesis rate was significantly slower in participants with obesity but increased after bariatric surgery. Conclusion: Obesity-associated glycine deficiency impairs the human body's ability to eliminate endogenous and exogenous metabolites/compounds via the glycine conjugation pathway. This impairment is ameliorated when glycine supply is restored after bariatric surgery. These findings imply that dietary glycine supplementation could treat obesity-associated metabolic complications due to the accumulation of intramitochondrial toxic metabolites. Clinical trial registration: https://clinicaltrials.gov/study/NCT04660513, identifier NCT04660513.


Asunto(s)
Cirugía Bariátrica , Ácido Benzoico , Humanos , Ácido Benzoico/metabolismo , Glicina , Hipuratos/metabolismo , Obesidad , Estudios de Casos y Controles
2.
Theranostics ; 13(11): 3872-3896, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441603

RESUMEN

Introduction: The potentially unlimited number of cardiomyocyte (CMs) derived from human induced pluripotent stem cells (hiPSCs) in vitro facilitates high throughput applications like cell transplantation for myocardial repair, disease modelling, and cardiotoxicity testing during drug development. Despite promising progress in these areas, a major disadvantage that limits the use of hiPSC derived CMs (hiPSC-CMs) is their immaturity. Methods: Three hiPSC lines (PCBC-hiPSC, DP3-hiPSCs, and MLC2v-mEGFP hiPSC) were differentiated into CMs (PCBC-CMs, DP3-CMs, and MLC2v-CMs, respectively) with or without retinoic acid (RA). hiPSC-CMs were either maintained up to day 30 of contraction (D30C), or D60C, or purified using lactate acid and used for experiments. Purified hiPSC-CMs were cultured in basal maturation medium (BMM) or BMM supplemented with ascorbic acid (AA) for 14 days. The AA treated and non-treated hiPSC-CMs were characterized for sarcomeric proteins (MLC2v, TNNI3, and MYH7), ion channel proteins (Kir2.1, Nav1.5, Cav1.2, SERCA2a, and RyR), mitochondrial membrane potential, metabolomics, and action potential. Bobcat339, a selective and potent inhibitor of DNA demethylation, was used to determine whether AA promoted hiPSC-CM maturation through modulating DNA demethylation. Results: AA significantly increased MLC2v expression in PCBC-CMs, DP3-CMs, MLC2v-CMs, and RA induced atrial-like PCBC-CMs. AA treatment significantly increased mitochondrial mass, membrane potential, and amino acid and fatty acid metabolism in PCBC-CMs. Patch clamp studies showed that AA treatment induced PCBC-CMs and DP3-CMs adaptation to a ventricular-like phenotype. Bobcat339 inhibited MLC2v protein expression in AA treated PCBC-CMs and DP3-CMs. DNA demethylation inhibition was also associated with reduced TET1 and TET2 protein expressions and reduced accumulation of the oxidative product, 5 hmC, in both PCBC-CMs and DP3-CMs, in the presence of AA. Conclusions: Ascorbic acid induced MLC2v protein expression and promoted ventricular-like CM subtype in hiPSC-CMs. The effect of AA on hiPSC-CM was attenuated with inhibition of TET1/TET2 mediated DNA demethylation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ácido Ascórbico/farmacología , Miocitos Cardíacos/metabolismo , Diferenciación Celular , Tretinoina/farmacología , Tretinoina/metabolismo , Células Cultivadas , Oxigenasas de Función Mixta/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
3.
Thyroid ; 32(6): 725-738, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35317606

RESUMEN

Background: Nonalcoholic steatohepatitis (NASH) is characterized by hepatic steatosis, lobular inflammation, and fibrosis. Thyroid hormone (TH) reduces steatosis; however, the therapeutic effect of TH on NASH-associated inflammation and fibrosis is not known. This study examined the therapeutic effect of TH on hepatic inflammation and fibrosis during NASH and investigated THs molecular actions on autophagy and mitochondrial biogenesis. Methods: HepG2-TRß cells were treated with bovine serum albumin-conjugated palmitic acid (PA) to mimic lipotoxic conditions in vitro. Mice with NASH were established by feeding C57BL/6J mice Western diet with 15% fructose in drinking water for 16 weeks. These mice were administered triiodothyronine (T3)/thyroxine (T4) supplemented in drinking water for the next eight weeks. Results: In cultured HepG2-TRß cells, TH treatment increased mitochondrial respiration and fatty acid oxidation under basal and PA-treated conditions, as well as decreased lipopolysaccharides and PA-stimulated inflammatory and fibrotic responses. In a dietary mouse model of NASH, TH administration decreased hepatic triglyceride content (3.19 ± 0.68 vs. 8.04 ± 0.42 mM/g liver) and hydroxyproline (1.44 ± 0.07 vs. 2.58 ± 0.30 mg/g liver) when compared with mice with untreated NASH. Metabolomics profiling of lipid metabolites showed that mice with NASH had increased triacylglycerol, diacylglycerol, monoacylglycerol, and hepatic cholesterol esters species, and these lipid species were decreased by TH treatment. Mice with NASH also showed decreased autophagic degradation as evidenced by decreased transcription Factor EB and lysosomal protease expression, and accumulation of LC3B-II and p62. TH treatment restored the level of lysosomal proteins and resolved the accumulation of LC3B-II and p62. Impaired mitochondrial biogenesis was also restored by TH. The simultaneous restoration of autophagy and mitochondrial biogenesis by TH increased ß-oxidation of fatty acids. Additionally, the elevated oxidative stress and inflammasome activation in NASH liver were also decreased by TH. Conclusions: In a mouse model of NASH, TH restored autophagy and mitochondrial biogenesis to increase ß-oxidation of fatty acids and to reduce lipotoxicity, oxidative stress, hepatic inflammation, and fibrosis. Activating thyroid hormone receptor in the liver may represent an effective strategy for NASH treatment.


Asunto(s)
Agua Potable , Enfermedad del Hígado Graso no Alcohólico , Animales , Modelos Animales de Enfermedad , Agua Potable/metabolismo , Ácidos Grasos/metabolismo , Fibrosis , Humanos , Inflamación/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hormonas Tiroideas/metabolismo , Triglicéridos/metabolismo
4.
Heliyon ; 8(12): e12371, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36590484

RESUMEN

Background: Patient-centred care is an important part of quality healthcare and patient satisfaction has been shown to be associated with improved clinical outcomes. We aim to explore the satisfaction of patients with diabetic kidney disease (DKD) with their visits to the TCM physician and its association with patients' socio-economic characteristics. Methods: A questionnaire survey was conducted among patients aged >21 years with DKD. Participants' demographic, socioeconomic characteristics and satisfaction scores measured with the self-administered Medical Interview Satisfaction Scale (MISS) were collected after they visited the TCM physician. MISS is a 26-item questionnaire consisting of three domains - cognitive, affective and behavioural which was developed to assess patient satisfaction with medical consultation. Independent samples t-test and one-way analysis of variance (ANOVA) were used to analyse the data. Results: 137 participants completed the questionnaires and were included in the analysis. The mean satisfaction score was 3.1 out of 5, with the cognitive domain being significantly higher compared to the affective and behavioural domains. The mean satisfaction score of the cognitive domain differed significantly among participants staying in different types of housing and those with previous TCM encounters. The mean satisfaction score of the behavioural domain differed significantly among participants of different ethnicities. The mean satisfaction scores of all the domains were also significantly different among participants with different duration of follow-up with their TCM physicians. Conclusion: We found that ethnicity, types of housing, previous TCM experience and the duration of follow-up with the TCM physician may affect the satisfaction scores of patients with DKD.

6.
Nat Rev Nephrol ; 17(1): 65-77, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33005037

RESUMEN

Therapeutic inhibition of the sodium-glucose co-transporter 2 (SGLT2) leads to substantial loss of energy (in the form of glucose) and additional solutes (in the form of Na+ and its accompanying anions) in urine. However, despite the continuously elevated solute excretion, long-term osmotic diuresis does not occur in humans with SGLT2 inhibition. Rather, patients on SGLT2 inhibitor therapy adjust to the reduction in energy availability and conserve water. The metabolic adaptations that are induced by SGLT2 inhibition are similar to those observed in aestivation - an evolutionarily conserved survival strategy that enables physiological adaptation to energy and water shortage. Aestivators exploit amino acids from muscle to produce glucose and fatty acid fuels. This endogenous energy supply chain is coupled with nitrogen transfer for organic osmolyte production, which allows parallel water conservation. Moreover, this process is often accompanied by a reduction in metabolic rate. By comparing aestivation metabolism with the fuel switches that occur during therapeutic SGLT2 inhibition, we suggest that SGLT2 inhibitors induce aestivation-like metabolic patterns, which may contribute to the improvements in cardiac and renal function observed with this class of therapeutics.


Asunto(s)
Deshidratación/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estivación/fisiología , Insuficiencia Cardíaca/metabolismo , Riñón/metabolismo , Insuficiencia Renal Crónica/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Adaptación Fisiológica/fisiología , Anfibios , Animales , Diuresis/efectos de los fármacos , Diuresis/fisiología , Corazón/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Mamíferos , Miocardio/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Equilibrio Hidroelectrolítico/efectos de los fármacos , Equilibrio Hidroelectrolítico/fisiología
7.
Int J Cardiol ; 272: 288-297, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30177232

RESUMEN

BACKGROUND: Preferential utilization of fatty acids for ATP production represents an advanced metabolic phenotype in developing cardiomyocytes. We investigated whether this phenotype could be attained in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) and assessed its influence on mitochondrial morphology, bioenergetics, respiratory capacity and ultra-structural architecture. METHODS AND RESULTS: Whole-cell proteome analysis of day 14 and day 30-CMs maintained in glucose media revealed a positive influence of extended culture on mitochondria-related processes that primed the day 30-CMs for fatty acid metabolism. Supplementing the day 30-CMs with palmitate/oleate (fatty acids) significantly enhanced mitochondrial remodeling, oxygen consumption rates and ATP production. Metabolomic analysis upon fatty acid supplementation revealed a ß-oxidation fueled ATP elevation that coincided with presence of junctional complexes, intercalated discs, t-tubule-like structures and adult isoform of cardiac troponin T. In contrast, glucose-maintained day 30-CMs continued to harbor underdeveloped ultra-structural architecture and more subdued bioenergetics, constrained by suboptimal mitochondria development. CONCLUSION: The advanced metabolic phenotype of preferential fatty acid utilization was attained in hiPSC-CMs, whereby fatty acid driven ß-oxidation sustained cardiac bioenergetics and respiratory capacity resulting in ultra-structural and functional characteristics similar to those of developmentally advanced cardiomyocytes. Better understanding of mitochondrial bioenergetics and ultra-structural adaptation associated with fatty acid metabolism has important implications in the study of cardiac physiology that are associated with late-onset mitochondrial and metabolic adaptations.


Asunto(s)
Metabolismo Energético/fisiología , Ácidos Grasos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Metabolismo de los Lípidos/fisiología , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/ultraestructura , Mitocondrias/ultraestructura , Miocitos Cardíacos/ultraestructura , Fenotipo
8.
Cell Metab ; 15(5): 764-77, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22560225

RESUMEN

The concept of "metabolic inflexibility" was first introduced to describe the failure of insulin-resistant human subjects to appropriately adjust mitochondrial fuel selection in response to nutritional cues. This phenomenon has since gained increasing recognition as a core component of the metabolic syndrome, but the underlying mechanisms have remained elusive. Here, we identify an essential role for the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT), in regulating substrate switching and glucose tolerance. By converting acetyl-CoA to its membrane permeant acetylcarnitine ester, CrAT regulates mitochondrial and intracellular carbon trafficking. Studies in muscle-specific Crat knockout mice, primary human skeletal myocytes, and human subjects undergoing L-carnitine supplementation support a model wherein CrAT combats nutrient stress, promotes metabolic flexibility, and enhances insulin action by permitting mitochondrial efflux of excess acetyl moieties that otherwise inhibit key regulatory enzymes such as pyruvate dehydrogenase. These findings offer therapeutically relevant insights into the molecular basis of metabolic inflexibility.


Asunto(s)
Carnitina O-Acetiltransferasa/deficiencia , Carnitina O-Acetiltransferasa/metabolismo , Glucosa/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Acetilcoenzima A/metabolismo , Acetilcarnitina/metabolismo , Animales , Carbono/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Células Cultivadas , Metabolismo Energético , Ácidos Grasos/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Ratones , Ratones Noqueados , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA