Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Rep ; 33(6): 108375, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33176135

RESUMEN

Glycine levels are inversely associated with branched-chain amino acids (BCAAs) and cardiometabolic disease phenotypes, but biochemical mechanisms that explain these relationships remain uncharted. Metabolites and genes related to BCAA metabolism and nitrogen handling were strongly associated with glycine in correlation analyses. Stable isotope labeling in Zucker fatty rats (ZFRs) shows that glycine acts as a carbon donor for the pyruvate-alanine cycle in a BCAA-regulated manner. Inhibition of the BCAA transaminase (BCAT) enzymes depletes plasma pools of alanine and raises glycine levels. In high-fat-fed ZFRs, dietary glycine supplementation raises urinary acyl-glycine content and lowers circulating triglycerides but also results in accumulation of long-chain acyl-coenzyme As (acyl-CoAs), lower 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in muscle, and no improvement in glucose tolerance. Collectively, these studies frame a mechanism for explaining obesity-related glycine depletion and also provide insight into the impact of glycine supplementation on systemic glucose, lipid, and amino acid metabolism.


Asunto(s)
Glicina/metabolismo , Hígado/fisiopatología , Músculo Esquelético/fisiopatología , Nitrógeno/metabolismo , Obesidad/fisiopatología , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Masculino , Ratas , Ratas Zucker
2.
Cell Metab ; 22(1): 65-76, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26154055

RESUMEN

Acylcarnitine metabolites have gained attention as biomarkers of nutrient stress, but their physiological relevance and metabolic purpose remain poorly understood. Short-chain carnitine conjugates, including acetylcarnitine, derive from their corresponding acyl-CoA precursors via the action of carnitine acetyltransferase (CrAT), a bidirectional mitochondrial matrix enzyme. We show here that contractile activity reverses acetylcarnitine flux in muscle, from net production and efflux at rest to net uptake and consumption during exercise. Disruption of this switch in mice with muscle-specific CrAT deficiency resulted in acetyl-CoA deficit, perturbed energy charge, and diminished exercise tolerance, whereas acetylcarnitine supplementation produced opposite outcomes in a CrAT-dependent manner. Likewise, in exercise-trained compared to untrained humans, post-exercise phosphocreatine recovery rates were positively associated with CrAT activity and coincided with dramatic shifts in muscle acetylcarnitine dynamics. These findings show acetylcarnitine serves as a critical acetyl buffer for working muscles and provide insight into potential therapeutic strategies for combatting exercise intolerance.


Asunto(s)
Acetilcoenzima A/metabolismo , Carnitina O-Acetiltransferasa/metabolismo , Carnitina/análogos & derivados , Fatiga Muscular , Músculos/enzimología , Animales , Carnitina/sangre , Carnitina/metabolismo , Ejercicio Físico , Humanos , Ratones Endogámicos C57BL , Músculos/metabolismo , Condicionamiento Físico Animal
3.
Cell Metab ; 15(5): 764-77, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22560225

RESUMEN

The concept of "metabolic inflexibility" was first introduced to describe the failure of insulin-resistant human subjects to appropriately adjust mitochondrial fuel selection in response to nutritional cues. This phenomenon has since gained increasing recognition as a core component of the metabolic syndrome, but the underlying mechanisms have remained elusive. Here, we identify an essential role for the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT), in regulating substrate switching and glucose tolerance. By converting acetyl-CoA to its membrane permeant acetylcarnitine ester, CrAT regulates mitochondrial and intracellular carbon trafficking. Studies in muscle-specific Crat knockout mice, primary human skeletal myocytes, and human subjects undergoing L-carnitine supplementation support a model wherein CrAT combats nutrient stress, promotes metabolic flexibility, and enhances insulin action by permitting mitochondrial efflux of excess acetyl moieties that otherwise inhibit key regulatory enzymes such as pyruvate dehydrogenase. These findings offer therapeutically relevant insights into the molecular basis of metabolic inflexibility.


Asunto(s)
Carnitina O-Acetiltransferasa/deficiencia , Carnitina O-Acetiltransferasa/metabolismo , Glucosa/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Acetilcoenzima A/metabolismo , Acetilcarnitina/metabolismo , Animales , Carbono/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Células Cultivadas , Metabolismo Energético , Ácidos Grasos/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Ratones , Ratones Noqueados , Mitocondrias/metabolismo
4.
J Biol Chem ; 284(34): 22840-52, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19553674

RESUMEN

In addition to its essential role in permitting mitochondrial import and oxidation of long chain fatty acids, carnitine also functions as an acyl group acceptor that facilitates mitochondrial export of excess carbons in the form of acylcarnitines. Recent evidence suggests carnitine requirements increase under conditions of sustained metabolic stress. Accordingly, we hypothesized that carnitine insufficiency might contribute to mitochondrial dysfunction and obesity-related impairments in glucose tolerance. Consistent with this prediction whole body carnitine diminution was identified as a common feature of insulin-resistant states such as advanced age, genetic diabetes, and diet-induced obesity. In rodents fed a lifelong (12 month) high fat diet, compromised carnitine status corresponded with increased skeletal muscle accumulation of acylcarnitine esters and diminished hepatic expression of carnitine biosynthetic genes. Diminished carnitine reserves in muscle of obese rats was accompanied by marked perturbations in mitochondrial fuel metabolism, including low rates of complete fatty acid oxidation, elevated incomplete beta-oxidation, and impaired substrate switching from fatty acid to pyruvate. These mitochondrial abnormalities were reversed by 8 weeks of oral carnitine supplementation, in concert with increased tissue efflux and urinary excretion of acetylcarnitine and improvement of whole body glucose tolerance. Acetylcarnitine is produced by the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT). A role for this enzyme in combating glucose intolerance was further supported by the finding that CrAT overexpression in primary human skeletal myocytes increased glucose uptake and attenuated lipid-induced suppression of glucose oxidation. These results implicate carnitine insufficiency and reduced CrAT activity as reversible components of the metabolic syndrome.


Asunto(s)
Envejecimiento/fisiología , Carnitina/fisiología , Mitocondrias Musculares/metabolismo , Hipernutrición/fisiopatología , Complejo Vitamínico B/fisiología , Animales , Transporte Biológico/efectos de los fármacos , Western Blotting , Carnitina/análogos & derivados , Carnitina/deficiencia , Carnitina/metabolismo , Carnitina/farmacología , Carnitina O-Acetiltransferasa/genética , Carnitina O-Acetiltransferasa/fisiología , Células Cultivadas , Grasas de la Dieta/efectos adversos , Intolerancia a la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Mitocondrias Musculares/efectos de los fármacos , Oxigenasas de Función Mixta/genética , Fosforilación Oxidativa , Distribución Aleatoria , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Complejo Vitamínico B/farmacología , gamma-Butirobetaína Dioxigenasa
5.
FASEB J ; 23(2): 586-604, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18945875

RESUMEN

Peroxisome proliferator-activated receptor-alpha (PPARalpha) is a master transcriptional regulator of beta-oxidation and a prominent target of hypolipidemic drugs. To gain deeper insights into the systemic consequences of impaired fat catabolism, we used quantitative, mass spectrometry-based metabolic profiling to investigate the fed-to-fasted transition in PPARalpha(+/+) and PPARalpha(-/-) mice. Compared to PPARalpha(+/+) animals, acylcarnitine profiles of PPARalpha(-/-) mice revealed 2- to 4-fold accumulation of long-chain species in the plasma, whereas short-chain species were reduced by as much as 69% in plasma, liver, and skeletal muscle. These results reflect a metabolic bottleneck downstream of carnitine palmitoyltransferase-1, a mitochondrial enzyme that catalyzes the first step in beta-oxidation. Organic and amino acid profiles of starved PPARalpha(-/-) mice suggested compromised citric acid cycle flux, enhanced urea cycle activity, and increased amino acid catabolism. PPARalpha(-/-) mice had 40-50% lower plasma and tissue levels of free carnitine, corresponding with diminished hepatic expression of genes involved in carnitine biosynthesis and transport. One week of oral carnitine supplementation conferred partial metabolic recovery in the PPARalpha(-/-) mice. In summary, comprehensive metabolic profiling revealed novel biomarkers of defective fat oxidation, while also highlighting the potential value of supplemental carnitine as a therapy and diagnostic tool for metabolic disorders.


Asunto(s)
Aminoácidos/metabolismo , Carnitina/administración & dosificación , Carnitina/metabolismo , Homeostasis , Metaboloma , PPAR alfa/metabolismo , Acilación , Administración Oral , Alimentación Animal , Animales , Calor , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , PPAR alfa/deficiencia , PPAR alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA