Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neural Plast ; 2021: 8846097, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33510782

RESUMEN

Network mechanisms of depression development and especially of improvement from nonpharmacological treatment remain understudied. The current study is aimed at examining brain networks functional connectivity in depressed patients and its dynamics in nonpharmacological treatment. Resting state fMRI data of 21 healthy adults and 51 patients with mild or moderate depression were analyzed with spatial independent component analysis; then, correlations between time series of the components were calculated and compared between-group (study 1). Baseline and repeated-measure data of 14 treated (psychotherapy or fMRI neurofeedback) and 15 untreated depressed participants were similarly analyzed and correlated with changes in depression scores (study 2). Aside from diverse findings, studies 1 and 2 both revealed changes in within-default mode network (DMN) and DMN to executive control network (ECN) connections. Connectivity in one pair, initially lower in depression, decreased in no treatment group and was inversely correlated with Montgomery-Asberg depression score change in treatment group. Weak baseline connectivity in this pair also predicted improvement on Montgomery-Asberg scale in both treatment and no treatment groups. Coupling of another pair, initially stronger in depression, increased in therapy though was unrelated to improvement. The results demonstrate possible role of within-DMN and DMN-ECN functional connectivity in depression treatment and suggest that neural mechanisms of nonpharmacological treatment action may be unrelated to normalization of initially disrupted connectivity.


Asunto(s)
Encéfalo/diagnóstico por imagen , Depresión/diagnóstico por imagen , Depresión/terapia , Red Nerviosa/diagnóstico por imagen , Descanso/fisiología , Adulto , Encéfalo/fisiopatología , Depresión/fisiopatología , Femenino , Humanos , Masculino , Red Nerviosa/fisiopatología , Neurorretroalimentación/métodos , Neurorretroalimentación/fisiología , Psicoterapia/métodos , Resultado del Tratamiento , Adulto Joven
2.
Appl Psychophysiol Biofeedback ; 43(2): 169-178, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29926265

RESUMEN

Neural networks interaction was studied in healthy men (20-35 years old) who underwent 20 sessions of EEG biofeedback training outside the MRI scanner, with concurrent fMRI-EEG scans at the beginning, middle, and end of the course. The study recruited 35 subjects for EEG biofeedback, but only 18 of them were considered as "successful" in self-regulation of target EEG bands during the whole course of training. Results of fMRI analysis during EEG biofeedback are reported only for these "successful" trainees. The experimental group (N = 23 total, N = 13 "successful") upregulated the power of alpha rhythm, while the control group (N = 12 total, N = 5 "successful") beta rhythm, with the protocol instructions being as for alpha training in both. The acquisition of the stable skills of alpha self-regulation was followed by the weakening of the irrelevant links between the cerebellum and visuospatial network (VSN), as well as between the VSN, the right executive control network (RECN), and the cuneus. It was also found formation of a stable complex based on the interaction of the precuneus, the cuneus, the VSN, and the high level visuospatial network (HVN), along with the strengthening of the interaction of the anterior salience network (ASN) with the precuneus. In the control group, beta enhancement training was accompanied by weakening of interaction between the precuneus and the default mode network, and a decrease in connectivity between the cuneus and the primary visual network (PVN). The differences between the alpha training group and the control group increased successively during training. Alpha training was characterized by a less pronounced interaction of the network formed by the PVN and the HVN, as well as by an increased interaction of the cerebellum with the precuneus and the RECN. The study demonstrated the differences in the structure and interaction of neural networks involved into alpha and beta generating systems forming and functioning, which should be taken into account during planning neurofeedback interventions. Possibility of using fMRI-guided biofeedback organized according to the described neural networks interaction may advance more accurate targeting specific symptoms during neurotherapy.


Asunto(s)
Ritmo alfa/fisiología , Ritmo beta/fisiología , Electroencefalografía , Imagen por Resonancia Magnética/métodos , Red Nerviosa , Neurorretroalimentación/métodos , Adulto , Mapeo Encefálico , Electroencefalografía/métodos , Voluntarios Sanos , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA