Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Ann Bot ; 132(7): 1205-1218, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37864498

RESUMEN

BACKGROUND AND AIMS: Tropaeolaceae (Brassicales) comprise ~100 species native to South and Central America. Tropaeolaceae flowers have a nectar spur, formed by a late expansion and evagination of the fused proximal region of the perianth (i.e. the floral tube). This spur is formed in the domain of the tube oriented towards the inflorescence axis, which corresponds to the adaxial floral region. However, little is known about the molecular mechanisms responsible for the evolution of spurs in Tropaeolaceae. METHODS: In this study, we examined the spatio-temporal expression of genes putatively responsible for differential patterns of cell division between the adaxial and abaxial floral regions in Tropaeolaceae. These genes include previously identified TCP and KNOX transcription factors and the cell division marker HISTONE H4 (HIS4). KEY RESULTS: We found a TCP4 homologue concomitantly expressed with spur initiation and elaboration. Tropaeolaceae possess two TCP4-like (TCP4L) copies, as a result of a Tropaeolaceae-specific duplication. The two copies (TCP4L1 and TCP4L2) in Tropaeolum longifolium show overlapping expression in the epidermis of reproductive apices (inflorescence meristems) and young floral buds, but only TlTCP4L2 shows differential expression in the floral tube at early stages of spur formation, restricted to the adaxial region. This adaxial expression of TlTCP4L2 overlaps with the expression of TlHIS4. Later in development, only TlTCP4L2 is expressed in the nectariferous tissue of the spur. CONCLUSIONS: Based on these results, we hypothesize that Tropaeolaceae TCP4L genes had a plesiomorphic role in epidermal development and that, after gene duplication, TCP4L2 acquired a new function in spur initiation and elaboration. To better understand spur evolution in Tropaeolaceae, it is critical to expand developmental genetic studies to their sister group, the Akaniaceae, which possess simultaneously an independent duplication of TCP4L genes and a spurless floral tube.


Asunto(s)
Magnoliopsida , Tropaeolaceae , Tropaeolum , Néctar de las Plantas/metabolismo , Tropaeolum/metabolismo , Flores , Magnoliopsida/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Ann Bot ; 114(2): 233-42, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24942001

RESUMEN

BACKGROUND AND AIMS: Species in the holoparasitic plant family Rafflesiaceae exhibit one of the most highly modified vegetative bodies in flowering plants. Apart from the flower shoot and associated bracts, the parasite is a mycelium-like endophyte living inside their grapevine hosts. This study provides a comprehensive treatment of the endophytic vegetative body for all three genera of Rafflesiaceae (Rafflesia, Rhizanthes and Sapria), and reports on the cytology and development of the endophyte, including its structural connection to the host, shedding light on the poorly understood nature of this symbiosis. METHODS: Serial sectioning and staining with non-specific dyes, periodic-Schiff's reagent and aniline blue were employed in order to characterize the structure of the endophyte across a phylogenetically diverse sampling. KEY RESULTS: A previously identified difference in the nuclear size between Rafflesiaceae endophytes and their hosts was used to investigate the morphology and development of the endophytic body. The endophytes generally comprise uniseriate filaments oriented radially within the host root. The emergence of the parasite from the host during floral development is arrested in some cases by an apparent host response, but otherwise vegetative growth does not appear to elicit suppression by the host. CONCLUSIONS: Rafflesiaceae produce greatly reduced and modified vegetative bodies even when compared with the other holoparasitic angiosperms once grouped with Rafflesiaceae, which possess some vegetative differentiation. Based on previous studies of seeds together with these findings, it is concluded that the endophyte probably develops directly from a proembryo, and not from an embryo proper. Similarly, the flowering shoot arises directly from the undifferentiated endophyte. These filaments produce a protocorm in which a shoot apex originates endogenously by formation of a secondary morphological surface. This degree of modification to the vegetative body is exceptional within angiosperms and warrants additional investigation. Furthermore, the study highlights a mechanical isolation mechanism by which the host may defend itself from the parasite.


Asunto(s)
Endófitos/fisiología , Flores/anatomía & histología , Magnoliopsida/anatomía & histología , Magnoliopsida/microbiología , Endófitos/citología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/microbiología , Brotes de la Planta/microbiología
3.
PLoS One ; 7(3): e33034, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22442676

RESUMEN

Populus trichocarpa is an important woody model organism whose entire genome has been sequenced. This resource has facilitated the annotation of microRNAs (miRNAs), which are short non-coding RNAs with critical regulatory functions. However, despite their developmental importance, P. trichocarpa miRNAs have yet to be annotated from numerous important tissues. Here we significantly expand the breadth of tissue sampling and sequencing depth for miRNA annotation in P. trichocarpa using high-throughput smallRNA (sRNA) sequencing. miRNA annotation was performed using three individual next-generation sRNA sequencing runs from separate leaves, xylem, and mechanically treated xylem, as well as a fourth run using a pooled sample containing vegetative apices, male flowers, female flowers, female apical buds, and male apical and lateral buds. A total of 276 miRNAs were identified from these datasets, including 155 previously unannotated miRNAs, most of which are P. trichocarpa specific. Importantly, we identified several xylem-enriched miRNAs predicted to target genes known to be important in secondary growth, including the critical reaction wood enzyme xyloglucan endo-transglycosylase/hydrolase and vascular-related transcription factors. This study provides a thorough genome-wide annotation of miRNAs in P. trichocarpa through deep sRNA sequencing from diverse tissue sets. Our data significantly expands the P. trichocarpa miRNA repertoire, which will facilitate a broad range of research in this major model system.


Asunto(s)
Bases de Datos Genéticas , MicroARNs/genética , Anotación de Secuencia Molecular , Populus/genética , ARN de Planta/genética , Óvulo Vegetal/genética , Polen/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA