Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuron ; 111(18): 2899-2917.e6, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37442130

RESUMEN

Motivated behaviors are often studied in isolation to assess labeled lines of neural connections underlying innate actions. However, in nature, multiple systems compete for expression of goal-directed behaviors via complex neural networks. Here, we examined flexible survival decisions in animals tasked with food seeking under predation threat. We found that predator exposure rapidly induced physiological, neuronal, and behavioral adaptations in mice highlighted by reduced food seeking and consumption contingent on current threat level. Diminishing conflict via internal state or external environment perturbations shifted feeding strategies. Predator introduction and/or selective manipulation of danger-responsive cholecystokinin (Cck) cells of the dorsal premammilary nucleus (PMd) suppressed hunger-sensitive Agouti-related peptide (AgRP) neurons, providing a mechanism for threat-evoked hypophagia. Increased caloric need enhanced food seeking under duress through AgRP pathways to the bed nucleus of the stria terminalis (BNST) and/or lateral hypothalamus (LH). Our results suggest oscillating interactions between systems underlying self-preservation and food seeking to promote optimal behavior.


Asunto(s)
Hipotálamo , Neuronas , Ratones , Animales , Proteína Relacionada con Agouti/metabolismo , Hipotálamo/metabolismo , Neuronas/fisiología , Hambre/fisiología , Área Hipotalámica Lateral/fisiología
2.
Trends Endocrinol Metab ; 34(4): 191-193, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841699

RESUMEN

Calculating and selecting what sensory and homeostatic requirements to attend to at any given time is vital for animals' survival. Tang et al. uncovered a circuit emanating from excitatory cortical neurons that transmit nociceptive information via the hypothalamus to blunt appetite during periods of chronic pain.


Asunto(s)
Apetito , Hambre , Animales , Hambre/fisiología , Dolor , Hipotálamo , Neuronas/fisiología
3.
Mol Psychiatry ; 28(4): 1622-1635, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36577844

RESUMEN

Anorexia nervosa (AN) is a debilitating and deadly disease characterized by low body mass index due to diminished food intake, and oftentimes concurrent hyperactivity. A high percentage of AN behavioral and metabolic phenotypes can be replicated in rodents given access to a voluntary running wheel and subject to food restriction, termed activity-based anorexia (ABA). Despite the well-documented bodyweight loss observed in AN human patients and ABA rodents, much less is understood regarding the neurobiological underpinnings of these maladaptive behaviors. Hunger-promoting hypothalamic agouti-related peptide (AgRP) neurons have been well characterized in their ability to regulate appetite, yet much less is known regarding their activity and function in the mediation of food intake during ABA. Here, feeding microstructure analysis revealed ABA mice decreased food intake due to increased interpellet interval retrieval and diminished meal number. Longitudinal activity recordings of AgRP neurons in ABA animals exhibited a maladaptive inhibitory response to food, independent of basal activity changes. We then demonstrated that ABA development or progression can be mitigated by chemogenetic AgRP activation through the reprioritization of food intake (increased meal number) over hyperactivity, but only during periods of food availability. These results elucidate a potential neural target for the amelioration of behavioral maladaptations present in AN patients.


Asunto(s)
Anorexia Nerviosa , Anorexia , Ratones , Humanos , Animales , Anorexia/metabolismo , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Hipotálamo/metabolismo , Anorexia Nerviosa/metabolismo , Neuronas/metabolismo , Ingestión de Alimentos
4.
Cell Metab ; 34(2): 285-298.e7, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108515

RESUMEN

The central nervous system has long been thought to regulate insulin secretion, an essential process in the maintenance of blood glucose levels. However, the anatomical and functional connections between the brain and insulin-producing pancreatic ß cells remain undefined. Here, we describe a functional transneuronal circuit connecting the hypothalamus to ß cells in mice. This circuit originates from a subpopulation of oxytocin neurons in the paraventricular hypothalamic nucleus (PVNOXT), and it reaches the islets of the endocrine pancreas via the sympathetic autonomic branch to innervate ß cells. Stimulation of PVNOXT neurons rapidly suppresses insulin secretion and causes hyperglycemia. Conversely, silencing of these neurons elevates insulin levels by dysregulating neuronal signaling and secretory pathways in ß cells and induces hypoglycemia. PVNOXT neuronal activity is triggered by glucoprivation. Our findings reveal that a subset of PVNOXT neurons form functional multisynaptic circuits with ß cells in mice to regulate insulin secretion, and their function is necessary for the ß cell response to hypoglycemia.


Asunto(s)
Células Secretoras de Insulina , Animales , Hipotálamo/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo
5.
Diabetes ; 68(12): 2210-2222, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31530579

RESUMEN

Melanin-concentrating hormone (MCH) is an important regulator of food intake, glucose metabolism, and adiposity. However, the mechanisms mediating these actions remain largely unknown. We used pharmacological and genetic approaches to show that the sirtuin 1 (SIRT1)/FoxO1 signaling pathway in the hypothalamic arcuate nucleus (ARC) mediates MCH-induced feeding, adiposity, and glucose intolerance. MCH reduces proopiomelanocortin (POMC) neuronal activity, and the SIRT1/FoxO1 pathway regulates the inhibitory effect of MCH on POMC expression. Remarkably, the metabolic actions of MCH are compromised in mice lacking SIRT1 specifically in POMC neurons. Of note, the actions of MCH are independent of agouti-related peptide (AgRP) neurons because inhibition of γ-aminobutyric acid receptor in the ARC did not prevent the orexigenic action of MCH, and the hypophagic effect of MCH silencing was maintained after chemogenetic stimulation of AgRP neurons. Central SIRT1 is required for MCH-induced weight gain through its actions on the sympathetic nervous system. The central MCH knockdown causes hypophagia and weight loss in diet-induced obese wild-type mice; however, these effects were abolished in mice overexpressing SIRT1 fed a high-fat diet. These data reveal the neuronal basis for the effects of MCH on food intake, body weight, and glucose metabolism and highlight the relevance of SIRT1/FoxO1 pathway in obesity.


Asunto(s)
Adiposidad/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Intolerancia a la Glucosa/metabolismo , Hiperfagia/metabolismo , Hormonas Hipotalámicas/farmacología , Melaninas/farmacología , Neuronas/efectos de los fármacos , Hormonas Hipofisarias/farmacología , Proopiomelanocortina/metabolismo , Sirtuina 1/metabolismo , Adiposidad/fisiología , Animales , Proteína Forkhead Box O1/genética , Intolerancia a la Glucosa/genética , Hiperfagia/genética , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Sirtuina 1/genética
6.
Curr Biol ; 28(24): R1386-R1388, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30562529

RESUMEN

Energy and sleep homeostasis are entwined, each capable of exerting priority based on need. The identification of central nodes involved in the appropriate orchestration of these systems is critical to our understanding of how the brain regulates behavior.


Asunto(s)
Nivel de Alerta , Sueño , Calbindina 2 , Neuronas , Tálamo
7.
Nat Med ; 23(12): 1444-1453, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29106398

RESUMEN

Asprosin is a recently discovered fasting-induced hormone that promotes hepatic glucose production. Here we demonstrate that asprosin in the circulation crosses the blood-brain barrier and directly activates orexigenic AgRP+ neurons via a cAMP-dependent pathway. This signaling results in inhibition of downstream anorexigenic proopiomelanocortin (POMC)-positive neurons in a GABA-dependent manner, which then leads to appetite stimulation and a drive to accumulate adiposity and body weight. In humans, a genetic deficiency in asprosin causes a syndrome characterized by low appetite and extreme leanness; this is phenocopied by mice carrying similar mutations and can be fully rescued by asprosin. Furthermore, we found that obese humans and mice had pathologically elevated concentrations of circulating asprosin, and neutralization of asprosin in the blood with a monoclonal antibody reduced appetite and body weight in obese mice, in addition to improving their glycemic profile. Thus, in addition to performing a glucogenic function, asprosin is a centrally acting orexigenic hormone that is a potential therapeutic target in the treatment of both obesity and diabetes.


Asunto(s)
Regulación del Apetito/genética , Hipotálamo/metabolismo , Proteínas de Microfilamentos/fisiología , Fragmentos de Péptidos/fisiología , Hormonas Peptídicas/fisiología , Adolescente , Adulto , Animales , Depresores del Apetito/metabolismo , Femenino , Fibrilina-1 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Neuronas/metabolismo , Fragmentos de Péptidos/genética , Hormonas Peptídicas/genética , Ratas , Transducción de Señal , Adulto Joven
8.
Trends Mol Med ; 22(5): 356-358, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27052261

RESUMEN

Hypothalamic AgRP neurons potently coordinate feeding behavior to ensure an organism's viability. However, their acute role in glucose-regulatory function remains to be addressed. Steculorum et al. now report that activation of a specific set of AgRP neurons results in an impairment of insulin-stimulated glucose uptake in brown fat through a myogenic signature program.


Asunto(s)
Proteína Relacionada con Agouti , Glucosa , Conducta Alimentaria , Hipotálamo , Neuronas
9.
Nat Commun ; 7: 10268, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26743492

RESUMEN

Agouti-related peptide (AgRP) neurons of the hypothalamus play a key role in regulating food intake and body weight, by releasing three different orexigenic molecules: AgRP; GABA; and neuropeptide Y. AgRP neurons express various G protein-coupled receptors (GPCRs) with different coupling properties, including Gs-linked GPCRs. At present, the potential role of Gs-coupled GPCRs in regulating the activity of AgRP neurons remains unknown. Here we show that the activation of Gs-coupled receptors expressed by AgRP neurons leads to a robust and sustained increase in food intake. We also provide detailed mechanistic data linking the stimulation of this class of receptors to the observed feeding phenotype. Moreover, we show that this pathway is clearly distinct from other GPCR signalling cascades that are operative in AgRP neurons. Our data suggest that drugs able to inhibit this signalling pathway may become useful for the treatment of obesity.


Asunto(s)
Proteína Relacionada con Agouti/genética , Ingestión de Alimentos/genética , Hipotálamo/metabolismo , Neuronas/metabolismo , Neuropéptido Y/genética , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células HEK293 , Humanos , Hipotálamo/citología , Inmunohistoquímica , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Neuropéptido Y/metabolismo , Técnicas de Placa-Clamp , Fosfoproteínas , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transducción de Señal , Ácido gamma-Aminobutírico/metabolismo
10.
Cell Metab ; 22(4): 646-57, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26278050

RESUMEN

Feeding behavior is exquisitely regulated by homeostatic and hedonic neural substrates that integrate energy demand as well as the reinforcing and rewarding aspects of food. Understanding the net contribution of homeostatic and reward-driven feeding has become critical because of the ubiquitous source of energy-dense foods and the consequent obesity epidemic. Hypothalamic agouti-related peptide-secreting neurons (AgRP neurons) provide the primary orexigenic drive of homeostatic feeding. Using models of neuronal inhibition or ablation, we demonstrate that the feeding response to a fast ghrelin or serotonin receptor agonist relies on AgRP neurons. However, when palatable food is provided, AgRP neurons are dispensable for an appropriate feeding response. In addition, AgRP-ablated mice present exacerbated stress-induced anorexia and palatable food intake--a hallmark of comfort feeding. These results suggest that, when AgRP neuron activity is impaired, neural circuits sensitive to emotion and stress are engaged and modulated by food palatability and dopamine signaling.


Asunto(s)
Proteína Relacionada con Agouti/genética , Neuronas/metabolismo , Proteína Relacionada con Agouti/deficiencia , Animales , Dopamina/metabolismo , Ingestión de Alimentos , Hipotálamo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA