Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Pollut ; 243(Pt A): 743-751, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30228066

RESUMEN

The explosion of the Deepwater Horizon (DWH) oil drilling rig resulted in the release of crude oil into the Gulf of Mexico. This event coincided with the spawning season of the Eastern oyster, Crassostrea virginica. Although oil bound to sediments constitutes an important source of polycyclic aromatic hydrocarbon (PAH) exposure to benthic organisms, toxicity of sediment-associated DWH oil has not been investigated in any bivalve species. Here, we evaluated the sublethal effects of acute exposure of gametes, embryos and veliger larvae of the Eastern oyster to different concentrations of unfiltered elutriates of sediment contaminated with DWH oil. Our results suggest that gametes, embryos and veliger larvae are harmed by exposure to unfiltered elutriates of contaminated sediment. Effective concentrations for fertilization inhibition were 40.6 µg tPAH50 L-1 and 173.2 µg tPAH50 L-1 for EC201h and EC501h values, respectively. Embryo exposure resulted in dose-dependent abnormalities (EC20 and EC50 values were 77.7 µg tPAH50 L-1 and 151 µg tPAH50 L-1, respectively) and reduction in shell growth (EC2024h value of 1180 µg tPAH50 L-1). Development and growth of veliger larvae were less sensitive to sediment-associated PAHs compared to embryos. Fertilization success and abnormality of larvae exposed as embryos were the most sensitive endpoints for assessing the toxicity of oil-contaminated sediment. Bulk of measured polycyclic aromatic hydrocarbons were sediment-bound and caused toxic effects at lower tPAH50 concentrations than high energy water accommodated fractions (HEWAF) preparations from the same DWH oil. This study suggests risk assessments would benefit from further study of suspended contaminated sediment.


Asunto(s)
Crassostrea/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Sedimentos Geológicos/química , Larva/crecimiento & desarrollo , Contaminación por Petróleo/análisis , Petróleo/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Exoesqueleto/crecimiento & desarrollo , Animales , Desastres , Embrión no Mamífero/efectos de los fármacos , Golfo de México , Larva/efectos de los fármacos , Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Estaciones del Año , Contaminantes Químicos del Agua/análisis
2.
Chemosphere ; 213: 205-214, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30223125

RESUMEN

The potential bioavailability of toxic chemicals from oil spills to water column organisms such as fish embryos may be influenced by physical dispersion along an energy gradient. For example, a surface slick with minimal wave action (low energy) could potentially produce different toxic effects from high energy situations such as pressurized discharge from a blown wellhead. Here we directly compared the toxicity of water accommodated fractions (WAFs) of oil prepared with low and high mixing energy (LEWAFs and HEWAFs, respectively) using surface oil samples collected during the 2010 Deepwater Horizon spill, and embryos of a representative nearshore species, red drum (Sciaenops ocellatus). Biological effects of each WAF type was quantified with several functional and morphological indices of developmental cardiotoxicity, providing additional insight into species-specific responses to oil exposure. Although the two WAF preparations yielded different profiles of polycyclic aromatic hydrocarbons (PAHs), cardiotoxic phenotypes were essentially identical. Based on benchmark thresholds for both morphological and functional cardiotoxicity, in general LEWAFs had lower thresholds for these phenotypes than HEWAFs based on total PAH measures. However, HEWAF and LEWAF toxicity thresholds were more similar when calculated based on estimates of dissolved PAHs only. Differences in thresholds were attributable to the weathering state of the oil samples.


Asunto(s)
Organismos Acuáticos/química , Cardiotoxicidad/etiología , Petróleo/efectos adversos , Hidrocarburos Policíclicos Aromáticos/química , Contaminantes Químicos del Agua/química , Agua/química , Animales , Peces , Contaminantes Químicos del Agua/análisis , Tiempo (Meteorología)
3.
Artículo en Inglés | MEDLINE | ID: mdl-28578262

RESUMEN

The 2010 Deepwater Horizon (DWH) oil spill caused the release of 4.9 million barrels of crude oil into the Gulf of Mexico, followed by the application of 2.9 million L of the dispersant, Corexit™ to mitigate the spread of oil. The spill resulted in substantial shoreline oiling, potentially exposing coastal organisms to polyaromatic hydrocarbon (PAH) and dispersant contaminants. To investigate molecular effects in fish following exposure to environmentally relevant concentrations of DWH oil and dispersants, we exposed adult sheepshead minnows (Cyprinodon variegatus) to two concentrations of high-energy water-accommodated fraction (HEWAF), chemically enhanced water-accommodated fraction (CEWAF) or Corexit 9500™ for 7 and 14days. Resulting changes in hepatic gene expression were measured using 8×15K microarrays. Analytical chemistry confirmed PAH concentrations in HEWAF and CEWAF treatments were low (ranging from 0.26 to 5.98µg/L), and likely representative of post-spill environmental concentrations. We observed significant changes to gene expression in all treatments (relative to controls), with Corexit and CEWAF having a greater effect on expression patterns in the liver than HEWAF treatments. Sub-network enrichment analysis of biological pathways revealed that the greatest number of altered pathways in high dose HEWAF and CEWAF treatments occurred following a 7-day exposure. Pathways related to immunity comprised the majority of pathways affected in each treatment, followed by pathways related to blood and circulation processes. Our results indicate that oil composition, concentration, and exposure duration all affect molecular responses in exposed fish, and suggest that low-concentration exposures may result in sub-lethal adverse effects.


Asunto(s)
Cyprinidae/genética , Cyprinidae/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Lípidos/toxicidad , Hígado/efectos de los fármacos , Contaminación por Petróleo , Petróleo/toxicidad , Animales , Perfilación de la Expresión Génica , Hígado/enzimología , Hígado/inmunología , Análisis por Micromatrices , Contaminantes Químicos del Agua/toxicidad
4.
PLoS One ; 12(5): e0176559, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28464028

RESUMEN

Exposure to crude oil or its individual constituents can have detrimental impacts on fish species, including impairment of the immune response. Increased observations of skin lesions in northern Gulf of Mexico fish during the 2010 Deepwater Horizon oil spill indicated the possibility of oil-induced immunocompromisation resulting in bacterial or viral infection. This study used a full factorial design of oil exposure and bacterial challenge to examine how oil exposure impairs southern flounder (Paralichthys lethostigma) immune function and increases susceptibility to the bacteria Vibrio anguillarum, a causative agent of vibriosis. Fish exposed to oil prior to bacterial challenge exhibited 94.4% mortality within 48 hours of bacterial exposure. Flounder challenged with V. anguillarum without prior oil exposure had <10% mortality. Exposure resulted in taxonomically distinct gill and intestine bacterial communities. Mortality strongly correlated with V. anguillarum levels, where it comprised a significantly higher percentage of the microbiome in Oil/Pathogen challenged fish and was nearly non-existent in the No Oil/Pathogen challenged fish bacterial community. Elevated V. anguillarum levels were a direct result of oil exposure-induced immunosuppression. Oil-exposure reduced expression of immunoglobulin M, the major systemic fish antibody, and resulted in an overall downregulation in transcriptome response, particularly in genes related to immune function, response to stimulus and hemostasis. Ultimately, sediment-borne oil exposure impairs immune function, leading to increased incidences of bacterial infections. This type of sediment-borne exposure may result in long-term marine ecosystem effects, as oil-bound sediment in the northern Gulf of Mexico will likely remain a contamination source for years to come.


Asunto(s)
Enfermedades de los Peces/microbiología , Lenguado/microbiología , Petróleo/efectos adversos , Animales , Enfermedades de los Peces/inmunología , Lenguado/inmunología , Inmunidad/efectos de los fármacos , Vibrio , Vibriosis/inmunología , Vibriosis/veterinaria
5.
Environ Toxicol Chem ; 36(4): 1067-1076, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27676139

RESUMEN

The Deepwater Horizon oil spill released millions of barrels of crude oil into the northern Gulf of Mexico, much of which remains associated with sediments and can have continuing impacts on biota. Juvenile southern flounder (Paralichthys lethostigma) were exposed for 28 d in the laboratory under controlled conditions to reference and Deepwater Horizon oil-contaminated sediments collected from coastal Louisiana to assess the impacts on an ecologically and commercially important benthic fish. The measured polycyclic aromatic hydrocarbon (PAH) concentrations in the sediments ranged from 0.25 mg/kg to 3940 mg/kg suite of 50 PAH analytes (tPAH50). Mortality increased with both concentration and duration of exposure. Exposed flounder length and weight was lower compared to controls after 28 d of exposure to the sediments with the highest PAH concentration, but condition factor was significantly higher in these fish compared with all other treatments. Histopathological analyses showed increased occurrence of gill abnormalities, including telangiectasis, epithelial proliferation, and fused lamellae in flounder exposed to sediments with the highest tPAH50 concentrations. In addition, hepatic vascular congestion and macrovesicular vacuolation were observed in flounder exposed to the more contaminated sediments. These data suggest that chronic exposure to field collected oil-contaminated sediments results in a variety of sublethal impacts to a benthic fish, with implications for long-term recovery from oil spills. Environ Toxicol Chem 2017;36:1067-1076. © 2016 SETAC.


Asunto(s)
Lenguado/crecimiento & desarrollo , Sedimentos Geológicos/química , Contaminación por Petróleo/análisis , Petróleo/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Monitoreo del Ambiente , Branquias/química , Branquias/efectos de los fármacos , Branquias/crecimiento & desarrollo , Golfo de México , Louisiana , Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
6.
Environ Toxicol Chem ; 36(3): 780-785, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27868239

RESUMEN

The 2010 Deepwater Horizon oil spill resulted in the accidental release of millions of barrels of crude oil into the Gulf of Mexico. Photo-induced toxicity following co-exposure to ultraviolet (UV) radiation is 1 mechanism by which polycyclic aromatic hydrocarbons (PAHs) from oil spills may exert toxicity. Red drum and speckled seatrout are both important fishery resources in the Gulf of Mexico. They spawn near-shore and produce positively buoyant embryos that hatch into larvae in approximately 24 h. The goal of the present study was to determine whether exposure to UV as natural sunlight enhances the toxicity of crude oil to early lifestage red drum and speckled seatrout. Larval fish were exposed to several dilutions of high-energy water-accommodated fractions (HEWAFs) from 2 different oils collected in the field under chain of custody during the 2010 spill and 3 gradations of natural sunlight in a factorial design. Co-exposure to natural sunlight and oil significantly reduced larval survival compared with exposure to oil alone. Although both species were sensitive at PAH concentrations reported during the Deepwater Horizon spill, speckled seatrout demonstrated a greater sensitivity to photo-induced toxicity than red drum. These data demonstrate that even advanced weathering of slicks does not ameliorate the potential for photo-induced toxicity of oil to these species. Environ Toxicol Chem 2017;36:780-785. © 2016 SETAC.


Asunto(s)
Larva/efectos de los fármacos , Perciformes/crecimiento & desarrollo , Petróleo/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Rayos Ultravioleta , Contaminantes Químicos del Agua/toxicidad , Animales , Explotaciones Pesqueras , Golfo de México , Larva/crecimiento & desarrollo , Larva/efectos de la radiación , Contaminación por Petróleo/análisis , Texas , Pruebas de Toxicidad , Tiempo (Meteorología)
7.
Mar Pollut Bull ; 109(1): 253-258, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27267114

RESUMEN

Crude oil released from the Deepwater Horizon disaster into the Gulf of Mexico posed potential impacts to infaunal invertebrates inhabiting near shore habitats. The effects of sediment-associated weathered slick oil on the amphipod Leptocheirus plumulosus was assessed using 28-d exposures to total PAH sediment concentrations ranging from 0.3 to 24mg/kg (sum of 50 PAHs or tPAH50). Survival and growth rate were significantly decreased in the 2.6, 11.4 and 24.2mg/kg treatments, but only growth in 5.5mg/kg. Offspring production was dramatically decreased but was variable and significantly different only for 24.2mg/kg. The concentrations associated with 20% decreases relative to reference were 1.05 (95% CI=0-2.89) mg/kg tPAH50 for growth rate and 0.632 (95% CI=0.11-2.15) mg/kg tPAH50 for offspring production. The concentrations of PAHs affecting amphipods are within the range of concentrations measured in marsh areas reportedly impacted by DWH oil after its release.


Asunto(s)
Anfípodos , Contaminación por Petróleo , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Sedimentos Geológicos , Petróleo
8.
Aquat Toxicol ; 165: 197-209, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26092636

RESUMEN

Exposure to oiled sediments can negatively impact the health of fish species. Here, we examine the effects of chronic exposure of juvenile southern flounder, Paralichthys lethostigma, to a sediment-oil mixture. Oil:sediment mixtures are persistent over time and can become bioavailable following sediment perturbation or resuspension. Juvenile flounder were exposed for 32 days under controlled laboratory conditions to five concentrations of naturally weathered Macondo MC252 oil mixed into uncontaminated, field-collected sediments. The percent composition of individual polycyclic aromatic hydrocarbons (PAHs) of the weathered oil did not change after mixing with the sediment. Spiked exposure sediments contained 0.04-395mg/kg tPAH50 (sum of 50 individual PAH concentration measurements). Mortality increased with both exposure duration and concentration of sediment-associated PAHs, and flounder exposed to concentrations above 8mg/kg tPAH50 showed significantly reduced growth over the course of the experiment. Evident histopathologic changes were observed in liver and gill tissues of fish exposed to more than 8mg/kg tPAH50. All fish at these concentrations showed hepatic intravascular congestion, macrovesicular hepatic vacoulation, telangiectasia of secondary lamellae, and lamellar epithelial proliferation in gill tissues. Dose-dependent upregulation of Cyp1a expression in liver tissues was observed. Taxonomic analysis of gill and intestinal commensal bacterial assemblages showed that exposure to oiled sediments led to distinct shifts in commensal bacterial population structures. These data show that chronic exposure to environmentally-relevant concentrations of oiled sediments produces adverse effects in flounder at multiple biological levels.


Asunto(s)
Exposición a Riesgos Ambientales , Lenguado/fisiología , Sedimentos Geológicos/química , Branquias/efectos de los fármacos , Hígado/efectos de los fármacos , Microbiota/efectos de los fármacos , Petróleo/toxicidad , Animales , Contaminación por Petróleo , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA