Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(4): e2313048121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38241439

RESUMEN

The thalamus provides the principal input to the cortex and therefore understanding the mechanisms underlying cortical integration of sensory inputs requires to characterize the thalamocortical connectivity in behaving animals. Here, we propose tangential insertions of high-density electrodes into mouse cortical layer 4 as a method to capture the activity of thalamocortical axons simultaneously with their synaptically connected cortical neurons. This technique can reliably monitor multiple parallel thalamic synaptic inputs to cortical neurons, providing an efficient approach to map thalamocortical connectivity in both awake and anesthetized mice.


Asunto(s)
Neuronas , Tálamo , Ratones , Animales , Neuronas/fisiología , Tálamo/fisiología , Axones/fisiología , Corteza Cerebral/fisiología , Vías Nerviosas/fisiología
2.
Nat Commun ; 13(1): 2303, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484133

RESUMEN

The cerebral cortex receives multiple afferents from the thalamus that segregate by stimulus modality forming cortical maps for each sense. In vision, the primary visual cortex maps the multiple dimensions of the visual stimulus in patterns that vary across species for reasons unknown. Here we introduce a general theory of cortical map formation, which proposes that map diversity emerges from species variations in the thalamic afferent density sampling sensory space. In the theory, increasing afferent sampling density enlarges the cortical domains representing the same visual point, allowing the segregation of afferents and cortical targets by multiple stimulus dimensions. We illustrate the theory with an afferent-density model that accurately replicates the maps of different species through afferent segregation followed by thalamocortical convergence pruned by visual experience. Because thalamocortical pathways use similar mechanisms for axon segregation and pruning, the theory may extend to other sensory areas of the mammalian brain.


Asunto(s)
Corteza Visual , Animales , Axones , Corteza Cerebral , Mamíferos , Tálamo , Visión Ocular
3.
Neuron ; 109(15): 2368-2370, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34352211

RESUMEN

Cells in mouse visual thalamus receive inputs from both eyes. In this issue of Neuron, Bauer et al. (2021) demonstrate that, as in carnivores and primates, only one eye drives cell firing while inputs from the other eye remain functionally silent.


Asunto(s)
Cuerpos Geniculados , Retina , Animales , Ratones , Neuronas , Tálamo
4.
Cell Rep ; 24(13): 3455-3465.e5, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30257207

RESUMEN

Excitatory synaptic input reaches the soma of a cortical excitatory pyramidal neuron via anatomically segregated apical and basal dendrites. In vivo, dendritic inputs are integrated during depolarized network activity, but how network activity affects apical and basal inputs is not understood. Using subcellular two-photon stimulation of Channelrhodopsin2-expressing layer 2/3 pyramidal neurons in somatosensory cortex, nucleus-specific thalamic optogenetic stimulation, and paired recordings, we show that slow, depolarized network activity amplifies small-amplitude synaptic inputs targeted to basal dendrites but reduces the amplitude of all inputs from apical dendrites and the cell soma. Intracellular pharmacology and mathematical modeling suggests that the amplification of weak basal inputs is mediated by postsynaptic voltage-gated channels. Thus, network activity dynamically reconfigures the relative somatic contribution of apical and basal inputs and could act to enhance the detectability of weak synaptic inputs.


Asunto(s)
Dendritas/fisiología , Potenciales Postsinápticos Excitadores , Células Piramidales/fisiología , Corteza Somatosensorial/fisiología , Potenciales de Acción , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Corteza Somatosensorial/citología , Tálamo/citología , Tálamo/fisiología
5.
Annu Rev Vis Sci ; 4: 263-285, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29856937

RESUMEN

The thalamocortical pathway is the main route of communication between the eye and the cerebral cortex. During embryonic development, thalamocortical afferents travel to L4 and are sorted by receptive field position, eye of origin, and contrast polarity (i.e., preference for light or dark stimuli). In primates and carnivores, this sorting involves numerous afferents, most of which sample a limited region of the binocular field. Devoting abundant thalamocortical resources to process a limited visual field has a clear advantage: It allows many stimulus combinations to be sampled at each spatial location. Moreover, the sampling efficiency can be further enhanced by organizing the afferents in a cortical grid for eye input and contrast polarity. We argue that thalamocortical interactions within this eye-polarity grid can be used to represent multiple stimulus combinations found in nature and to build an accurate cortical map for multidimensional stimulus space.


Asunto(s)
Vías Nerviosas/fisiología , Neuronas Retinianas/fisiología , Tálamo/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Mapeo Encefálico , Ojo/embriología , Humanos , Vías Nerviosas/embriología , Neuronas Aferentes/fisiología , Tálamo/embriología , Corteza Visual/embriología , Campos Visuales/fisiología , Vías Visuales/fisiología
6.
Front Neural Circuits ; 10: 37, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242445

RESUMEN

Neurons in the primary visual cortex are known for responding vigorously but with high variability to classical stimuli such as drifting bars or gratings. By contrast, natural scenes are encoded more efficiently by sparse and temporal precise spiking responses. We used a conductance-based model of the visual system in higher mammals to investigate how two specific features of the thalamo-cortical pathway, namely push-pull receptive field organization and fast synaptic depression, can contribute to this contextual reshaping of V1 responses. By comparing cortical dynamics evoked respectively by natural vs. artificial stimuli in a comprehensive parametric space analysis, we demonstrate that the reliability and sparseness of the spiking responses during natural vision is not a mere consequence of the increased bandwidth in the sensory input spectrum. Rather, it results from the combined impacts of fast synaptic depression and push-pull inhibition, the later acting for natural scenes as a form of "effective" feed-forward inhibition as demonstrated in other sensory systems. Thus, the combination of feedforward-like inhibition with fast thalamo-cortical synaptic depression by simple cells receiving a direct structured input from thalamus composes a generic computational mechanism for generating a sparse and reliable encoding of natural sensory events.


Asunto(s)
Excitabilidad Cortical/fisiología , Inhibición Neural/fisiología , Tálamo/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Percepción Visual/fisiología , Animales , Gatos
7.
Nature ; 533(7601): 52-7, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27120164

RESUMEN

The primary visual cortex contains a detailed map of the visual scene, which is represented according to multiple stimulus dimensions including spatial location, ocular dominance and stimulus orientation. The maps for spatial location and ocular dominance arise from the spatial arrangement of thalamic afferent axons in the cortex. However, the origins of the other maps remain unclear. Here we show that the cortical maps for orientation, direction and retinal disparity in the cat (Felis catus) are all strongly related to the organization of the map for spatial location of light (ON) and dark (OFF) stimuli, an organization that we show is OFF-dominated, OFF-centric and runs orthogonal to ocular dominance columns. Because this ON-OFF organization originates from the clustering of ON and OFF thalamic afferents in the visual cortex, we conclude that all main features of visual cortical topography, including orientation, direction and retinal disparity, follow a common organizing principle that arranges thalamic axons with similar retinotopy and ON-OFF polarity in neighbouring cortical regions.


Asunto(s)
Mapeo Encefálico , Percepción Espacial/fisiología , Corteza Visual/fisiología , Campos Visuales/fisiología , Vías Aferentes/efectos de la radiación , Animales , Axones/fisiología , Gatos , Oscuridad , Predominio Ocular/fisiología , Luz , Macaca mulatta , Masculino , Modelos Neurológicos , Orientación/fisiología , Orientación/efectos de la radiación , Estimulación Luminosa , Retina/fisiología , Retina/efectos de la radiación , Percepción Espacial/efectos de la radiación , Tálamo/fisiología , Tálamo/efectos de la radiación , Corteza Visual/efectos de la radiación
8.
Proc Natl Acad Sci U S A ; 111(8): 3170-5, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516130

RESUMEN

Astronomers and physicists noticed centuries ago that visual spatial resolution is higher for dark than light stimuli, but the neuronal mechanisms for this perceptual asymmetry remain unknown. Here we demonstrate that the asymmetry is caused by a neuronal nonlinearity in the early visual pathway. We show that neurons driven by darks (OFF neurons) increase their responses roughly linearly with luminance decrements, independent of the background luminance. However, neurons driven by lights (ON neurons) saturate their responses with small increases in luminance and need bright backgrounds to approach the linearity of OFF neurons. We show that, as a consequence of this difference in linearity, receptive fields are larger in ON than OFF thalamic neurons, and cortical neurons are more strongly driven by darks than lights at low spatial frequencies. This ON/OFF asymmetry in linearity could be demonstrated in the visual cortex of cats, monkeys, and humans and in the cat visual thalamus. Furthermore, in the cat visual thalamus, we show that the neuronal nonlinearity is present at the ON receptive field center of ON-center neurons and ON receptive field surround of OFF-center neurons, suggesting an origin at the level of the photoreceptor. These results demonstrate a fundamental difference in visual processing between ON and OFF channels and reveal a competitive advantage for OFF neurons over ON neurons at low spatial frequencies, which could be important during cortical development when retinal images are blurred by immature optics in infant eyes.


Asunto(s)
Adaptación a la Oscuridad/fisiología , Modelos Neurológicos , Células Fotorreceptoras de Vertebrados/fisiología , Tálamo/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Percepción Visual/fisiología , Animales , Gatos , Oscuridad , Potenciales Evocados Visuales/fisiología , Humanos , Luz , Estimulación Luminosa
9.
PLoS Comput Biol ; 10(1): e1003418, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24415930

RESUMEN

In a wide range of studies, the emergence of orientation selectivity in primary visual cortex has been attributed to a complex interaction between feed-forward thalamic input and inhibitory mechanisms at the level of cortex. Although it is well known that layer 4 cortical neurons are highly sensitive to the timing of thalamic inputs, the role of the stimulus-driven timing of thalamic inputs in cortical orientation selectivity is not well understood. Here we show that the synchronization of thalamic firing contributes directly to the orientation tuned responses of primary visual cortex in a way that optimizes the stimulus information per cortical spike. From the recorded responses of geniculate X-cells in the anesthetized cat, we synthesized thalamic sub-populations that would likely serve as the synaptic input to a common layer 4 cortical neuron based on anatomical constraints. We used this synchronized input as the driving input to an integrate-and-fire model of cortical responses and demonstrated that the tuning properties match closely to those measured in primary visual cortex. By modulating the overall level of synchronization at the preferred orientation, we show that efficiency of information transmission in the cortex is maximized for levels of synchronization which match those reported in thalamic recordings in response to naturalistic stimuli, a property which is relatively invariant to the orientation tuning width. These findings indicate evidence for a more prominent role of the feed-forward thalamic input in cortical feature selectivity based on thalamic synchronization.


Asunto(s)
Corteza Cerebral/fisiología , Modelos Neurológicos , Neuronas/metabolismo , Tálamo/fisiología , Corteza Visual/fisiología , Algoritmos , Animales , Gatos , Simulación por Computador , Fenómenos Electrofisiológicos , Cuerpos Geniculados/fisiología , Masculino , Inhibición Neural/fisiología , Neuronas/fisiología , Distribución Normal , Probabilidad , Vías Visuales/fisiología
10.
J Neurosci ; 30(47): 15760-8, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21106815

RESUMEN

Both ongoing and natural stimulus driven neuronal activity are dominated by transients. Selective gating of these transients is mandatory for proper brain function and may, in fact, form the basis of millisecond-fast decision making and action selection. Here we propose that neuronal networks may exploit timing differences between correlated excitation and inhibition (temporal gating) to control the propagation of spiking activity transients. When combined with excitation-inhibition balance, temporal gating constitutes a powerful mechanism to control the propagation of mixtures of transient and tonic neural activity components.


Asunto(s)
Potenciales de Acción/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Filtrado Sensorial/fisiología , Transducción de Señal/fisiología , Animales , Corteza Auditiva/fisiología , Gatos , Primates , Ratas , Tálamo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA