Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834781

RESUMEN

Abrogating synaptotoxicity in age-related neurodegenerative disorders is an extremely promising area of research with significant neurotherapeutic implications in tauopathies including Alzheimer's disease (AD). Our studies using human clinical samples and mouse models demonstrated that aberrantly elevated phospholipase D1 (PLD1) is associated with amyloid beta (Aß) and tau-driven synaptic dysfunction and underlying memory deficits. While knocking out the lipolytic PLD1 gene is not detrimental to survival across species, elevated expression is implicated in cancer, cardiovascular conditions and neuropathologies, leading to the successful development of well-tolerated mammalian PLD isoform-specific small molecule inhibitors. Here, we address the importance of PLD1 attenuation, achieved using repeated 1 mg/kg of VU0155069 (VU01) intraperitoneally every alternate day for a month in 3xTg-AD mice beginning only from ~11 months of age (with greater influence of tau-driven insults) compared to age-matched vehicle (0.9% saline)-injected siblings. A multimodal approach involving behavior, electrophysiology and biochemistry corroborate the impact of this pre-clinical therapeutic intervention. VU01 proved efficacious in preventing in later stage AD-like cognitive decline affecting perirhinal cortex-, hippocampal- and amygdala-dependent behaviors. Glutamate-dependent HFS-LTP and LFS-LTD improved. Dendritic spine morphology showed the preservation of mushroom and filamentous spine characteristics. Differential PLD1 immunofluorescence and co-localization with Aß were noted.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Humanos , Animales , Lactante , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Ratones Transgénicos , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/metabolismo , Mamíferos/metabolismo
2.
Sci Rep ; 7(1): 15012, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118388

RESUMEN

Synaptic dysfunction due to the disrupting binding of amyloid beta (Aß) and tau oligomers is one of the earliest impairments in Alzheimer's Disease (AD), driving initial cognitive deficits and clinical manifestation. Consequently, there is ample consensus that preventing early synaptic dysfunction would be an effective therapeutic strategy for AD. With this goal in mind, we investigated the effect of a treatment of mice with near infrared (NIR) light on synaptic vulnerability to Aß oligomers. We found that Aß oligomer binding to CNS synaptosomes isolated from wild type (wt) mice treated with NIR light was significantly reduced and the resulting suppression of long term potentiation (LTP) by Aß oligomers was prevented. Similarly, APP transgenic mice treated with NIR showed a significant reduction of endogenous Aß at CNS synapses. We further found that these phenomena were accompanied by increased synaptic mitochondrial membrane potential in both wt and Tg2576 mice. This study provides evidence that NIR light can effectively reduce synaptic vulnerability to damaging Aß oligomers, thus furthering NIR light therapy as a viable treatment for AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Rayos Infrarrojos , Unión Proteica/efectos de la radiación , Sinapsis/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/radioterapia , Péptidos beta-Amiloides/toxicidad , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Potenciación a Largo Plazo/efectos de la radiación , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de la radiación , Ratones Endogámicos C57BL , Ratones Transgénicos , Sinaptosomas/metabolismo , Sinaptosomas/efectos de la radiación
3.
Neurobiol Learn Mem ; 128: 65-79, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26748024

RESUMEN

Long-term memory (LTM) of fear stores activity dependent modifications that include changes in amygdala signaling. Previously, we identified an enhanced probability of release of glutamate mediated signaling to be important in rat fear potentiated startle (FPS), a well-established translational behavioral measure of fear. Here, we investigated short- and long-term synaptic plasticity in FPS involving metabotropic glutamate receptors (mGluRs) and associated downstream proteomic changes in the thalamic-lateral amygdala pathway (Th-LA). Aldolase A, an inhibitor of phospholipase D (PLD), expression was reduced, concurrent with significantly elevated PLD protein expression. Blocking the PLD-mGluR signaling significantly reduced PLD activity. While transmitter release probability increased in FPS, PLD-mGluR agonist and antagonist actions were occluded. In the unpaired group (UNP), blocking the PLD-mGluR increased while activating the receptor decreased transmitter release probability, consistent with decreased synaptic potentials during tetanic stimulation. FPS Post-tetanic potentiation (PTP) immediately following long-term potentiation (LTP) induction was significantly increased. Blocking PLD-mGluR signaling prevented PTP and reduced cumulative PTP probability but not LTP maintenance in both groups. These effects are similar to those mediated through mGluR7, which is co-immunoprecipitated with PLD in FPS. Lastly, blocking mGluR-PLD in the rat amygdala was sufficient to prevent behavioral expression of fear memory. Thus, our study in the Th-LA pathway provides the first evidence for PLD as an important target of mGluR signaling in amygdala fear-associated memory. Importantly, the PLD-mGluR provides a novel therapeutic target for treating maladaptive fear memories in posttraumatic stress and anxiety disorders.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo/fisiología , Potenciación a Largo Plazo , Fosfolipasa D/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Reflejo de Sobresalto/fisiología , Amígdala del Cerebelo/enzimología , Animales , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Ciclopropanos/farmacología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Miedo/efectos de los fármacos , Fructosa-Bifosfato Aldolasa/metabolismo , Glicina/análogos & derivados , Glicina/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Largo Plazo/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Fosfolipasa D/antagonistas & inhibidores , Fosfolipasa D/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Reflejo de Sobresalto/efectos de los fármacos , Tálamo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA