Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Tradit Complement Med ; 12(2): 115-122, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35528470

RESUMEN

Background and aim: This study investigated the effect of Kava extract (Piper methysticum), a medicinal plant that has been worldly used by its anxiolytic effects, on monoamine oxidase (MAO) activity of mice brain after 21 days of treatment as well as anxiolytic and locomotor behavior. Furthermore, the in vitro inhibitory profile of Kava extract on MAO-B activity of mouse brain was evaluated. Experimental procedure: Mice were treated with Kava extract (10, 40, 100 and 400 mg/kg) for 21 days by gavage. After behavioral analysis (plus maze test and open field), MAO activity in different mouse brain structures (cortex, hippocampus, region containing the substantia nigra and striatum) were performed. MAO-B inhibitory profile was characterized in vitro. Results: The treatment with Kava extract (40 mg/kg) increased the percentage of entries of mice into the open arms. Ex vivo analysis showed an inhibition on MAO-B activity caused by Kava extract in cortex (10 mg/kg) and in the region containing the substantia nigra (10 and 100 mg/kg). In vitro, Kava extract also reversibly inhibited MAO-B activity with IC50 = 14.62 µg/mL and, increased Km values at the concentrations of 10 and 30 µg/mL and decreased Vmax value at 100 µg/mL. Conclusion: Kava extract showed different effects on MAO-B isoform depending on the brain structure evaluated. Therefore, the use of Kava extract could be promissory in pathologies where MAO-B is the pharmacological target.

2.
J Ethnopharmacol ; 265: 113293, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32841698

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Kava extract (Piper methysticum) is a phytotherapic mainly used for the treatment of anxiety. Although the reported effects of Kava drinking improving psychotic symptoms of patients when it was introduced to relieve anxiety in aboriginal communities, its effects on models of psychosis-like symptoms are not investigated. AIM OF THE STUDY: To investigate the effects of Kava extract on behavioral changes induced by amphetamine (AMPH) and its possible relation with alterations in monoamine oxidase (MAO) activity. MATERIALS AND METHODS: Mice received vehicle or Kava extract by gavage and, 2 h after vehicle or AMPH intraperitoneally. Twenty-five minutes after AMPH administration, behavioral (elevated plus maze, open field, stereotyped behavior, social interaction and Y maze) and biochemical tests (MAO-A and MAO-B activity in cortex, hippocampus and striatum) were sequentially evaluated. RESULTS: Kava extract exhibited anxiolytic effects in plus maze test, increased the locomotor activity of mice in open field test and decreased MAO-A (in cortex) and MAO-B (in hippocampus) activity of mice. Kava extract prevented the effects of AMPH on stereotyped behavior and, the association between Kava/AMPH increased the number of entries into arms in Y maze test as well as MAO-B activity in striatum. However, Kava extract did not prevent hyperlocomotion induced by AMPH in open field test. The social interaction was not modified by Kava extract and/or AMPH. CONCLUSION: The results showed that Kava extract decreased the stereotyped behavior induced by AMPH at the same dose that promotes anxiolytic effects, which could be useful to minimize the psychotic symptoms in patients.


Asunto(s)
Anfetamina/farmacología , Kava/química , Extractos Vegetales/farmacología , Conducta Estereotipada/efectos de los fármacos , Animales , Ansiolíticos/farmacología , Ansiedad/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Locomoción/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones
3.
Food Chem Toxicol ; 125: 29-37, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30592967

RESUMEN

Curcumin, the main bioactive polyphenolic compound in Curcuma longa L. rhizomes has a wide range of bioactive properties. Curcumin presents low solubility in water and thus limited bioavailability, which decreases its applicability. In this study, cytotoxic effects of curcumin solid dispersions (CurSD) were evaluated against tumor (breast adenocarcinoma and lung, cervical and hepatocellular carcinoma) and non-tumor (PLP2) cells, while cytotoxic and genotoxic effects were evaluated in Allium cepa. The effect of the CurSD on the acetylcholinesterase (AChE), butyrylcholinesterase (BChE), glutathione S-transferase (GST), and monoamine oxidase (MAO A-B) enzymes was determined, as well as its capacity to inhibit the oxidative hemolysis (OxHLIA) and the formation of thiobarbituric acid reactive substances (TBARS). CurSD are constituted by nanoparticles that are readily dispersible in water, and inhibited 24% and 64% of the AChE and BChE activity at 100 µM, respectively. GST activity was inhibited at 30 µM while MAO-A and B activity were inhibited at 100 µM. CurSD showed cytotoxicity against all the tested tumor cell lines without toxic effects for non-tumor cells. No cytotoxic and genotoxic potential was detected with the Allium cepa test. CurSD maintained the characteristics of free curcumin on the in vitro modulation of important enzymes without appreciable toxicity.


Asunto(s)
Antioxidantes/farmacología , Carcinógenos/farmacología , Curcumina/farmacología , Mutágenos/farmacología , Animales , Línea Celular Tumoral , Formas de Dosificación , Inhibidores Enzimáticos/farmacología , Hemólisis/efectos de los fármacos , Humanos , Ratones , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Cebollas/efectos de los fármacos , Oxidación-Reducción , Células RAW 264.7 , Ratas , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
4.
Can J Physiol Pharmacol ; 96(4): 359-365, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28881148

RESUMEN

(-)-α-Bisabolol (BISA) is a sesquiterpene alcohol, which has several recognized biological activities, including anti-inflammatory, anti-irritant, and antibacterial properties. In the present study, we investigated the influence of BISA (5, 25, and 250 µmol/L) on rotenone (500 µmol/L)-induced toxicity in Drosophila melanogaster for 7 days. BISA supplementation significantly decreased rotenone-induced mortality and locomotor deficits. The loss of motor function induced by rotenone correlated with a significant change in stress response factors; it decreased thiol levels, inhibited mitochondria complex I, and increased the mRNA expression of antioxidant marker proteins such as superoxide dismutase (SOD), catalase (CAT), and the keap1 gene product. Taken together, our findings indicate that the toxicity of rotenone is likely due to the direct inhibition of complex I activity, resulting in a high level of oxidative stress. Dietary supplementation with BISA affected the expression of SOD mRNA only at a concentration of 250 µmol/L, and did not affect any other parameter measured. Our results showed a protective effect of BISA on rotenone-induced mortality and locomotor deficits in Drosophila; this effect did not correlate with mitochondrial complex I activity, but may be related to the antioxidant protection afforded by eliminating superoxide generated as a result of rotenone-induced mitochondrial dysfunction.


Asunto(s)
Drosophila melanogaster/efectos de los fármacos , Sustancias Protectoras/farmacología , Rotenona/toxicidad , Sesquiterpenos/farmacología , Animales , Catalasa/genética , Catalasa/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Complejo I de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Sesquiterpenos Monocíclicos , Actividad Motora/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Compuestos de Sulfhidrilo/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Análisis de Supervivencia
5.
Neurochem Res ; 41(5): 1170-84, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26732278

RESUMEN

Long-term treatment with fluphenazine is associated with manifestation of extrapyramidal side effects, such as tardive dyskinesia. The molecular mechanisms related to the pathophysiology of TD remain unclear, and several hypotheses, including a role for oxidative stress, have been proposed. Harpagophytum procumbens is an herbal medicine used mainly due to anti-inflammatory effects, but it also exhibits antioxidant effects. We investigated the effect of ethyl acetate fraction of H. procumbens (EAF HP) in fluphenazine-induced orofacial dyskinesia by evaluating behavioral parameters at different times (vacuous chewing movements (VCM's) and locomotor and exploratory activity), biochemical serological analyses, and biochemical markers of oxidative stress of the liver, kidney, cortex, and striatum. Chronic administration of fluphenazine (25 mg/kg, intramuscular (i.m) significantly increased the VCMs at all analyzed times (2, 7, 14, and 21 days), and this was inhibited by EAF HP (especially at a dose of 30 mg/kg). Fluphenazine decreased locomotion and exploratory activity, and EAF HP did not improve this decrease. Fluphenazine induced oxidative damage, as identified by changes in catalase activity and ROS levels in the cortex and striatum, which was reduced by EAF HP, especially in the striatum. In the cortex, EAF HP was protective against fluphenazine-induced changes in catalase activity but not against the increase in ROS level. Furthermore, EAF HP was shown to be safe, since affected serum biochemical parameters or parameters of oxidative stress in the liver and kidney. These findings suggest that the H. procumbens is a promising therapeutic agent for the treatment of involuntary oral movements.


Asunto(s)
Acetatos/química , Antioxidantes/farmacología , Antipsicóticos/toxicidad , Encéfalo/efectos de los fármacos , Flufenazina/toxicidad , Harpagophytum/química , Masticación/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Discinesia Tardía/tratamiento farmacológico , Animales , Antioxidantes/uso terapéutico , Encéfalo/metabolismo , Conducta Exploratoria/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/uso terapéutico , Masculino , Actividad Motora/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Ratas Wistar , Solventes , Discinesia Tardía/inducido químicamente , Discinesia Tardía/metabolismo , Discinesia Tardía/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA