Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nutrients ; 13(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068120

RESUMEN

BACKGROUND: Triple-negative breast cancers (TNBCs), accounting for approximately 15% of breast cancers, lack targeted therapy. A hallmark of cancer is metabolic reprogramming, with one-carbon metabolism essential to many processes altered in tumor cells, including nucleotide biosynthesis and antioxidant defenses. We reported that folate deficiency via folic acid (FA) withdrawal in several TNBC cell lines results in heterogenous effects on cell growth, metabolic reprogramming, and mitochondrial impairment. To elucidate underlying drivers of TNBC sensitivity to folate stress, we characterized in vivo and in vitro responses to FA restriction in two TNBC models differing in metastatic potential and innate mitochondrial dysfunction. METHODS: Metastatic MDA-MB-231 cells (high mitochondrial dysfunction) and nonmetastatic M-Wnt cells (low mitochondrial dysfunction) were orthotopically injected into mice fed diets with either 2 ppm FA (control), 0 ppm FA, or 12 ppm FA (supplementation; in MDA-MB-231 only). Tumor growth, metabolomics, and metabolic gene expression were assessed. MDA-MB-231 and M-Wnt cells were also grown in media with 0 or 2.2 µM FA; metabolic alterations were assessed by extracellular flux analysis, flow cytometry, and qPCR. RESULTS: Relative to control, dietary FA restriction decreased MDA-MB-231 tumor weight and volume, while FA supplementation minimally increased MDA-MB-231 tumor weight. Metabolic studies in vivo and in vitro using MDA-MB-231 cells showed FA restriction remodeled one-carbon metabolism, nucleotide biosynthesis, and glucose metabolism. In contrast to findings in the MDA-MB-231 model, FA restriction in the M-Wnt model, relative to control, led to accelerated tumor growth, minimal metabolic changes, and modest mitochondrial dysfunction. Increased mitochondrial dysfunction in M-Wnt cells, induced via chloramphenicol, significantly enhanced responsiveness to the cytotoxic effects of FA restriction. CONCLUSIONS: Given the lack of targeted treatment options for TNBC, uncovering metabolic vulnerabilities that can be exploited as therapeutic targets is an important goal. Our findings suggest that a major driver of TNBC sensitivity to folate restriction is a high innate level of mitochondrial dysfunction, which can increase dependence on one-carbon metabolism. Thus, folate deprivation or antifolate therapy for TNBCs with metabolic inflexibility due to their elevated levels of mitochondrial dysfunction may represent a novel precision-medicine strategy.


Asunto(s)
Dietoterapia/métodos , Ácido Fólico/administración & dosificación , Neoplasias Mamarias Experimentales/dietoterapia , Neoplasias de la Mama Triple Negativas/dietoterapia , Animales , Línea Celular Tumoral , Femenino , Citometría de Flujo , Humanos , Neoplasias Mamarias Experimentales/metabolismo , Metabolómica , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Neoplasias de la Mama Triple Negativas/metabolismo
2.
J Biol Chem ; 289(38): 26383-26394, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25086046

RESUMEN

Folate, an important nutrient in the human diet, has been implicated in cancer, but its role in metastasis is not established. We have shown previously that the withdrawal of medium folate leads to the inhibition of migration and invasion of A549 lung carcinoma cells. Here we have demonstrated that medium folate regulates the function of Rho GTPases by enabling their carboxyl methylation and translocation to plasma membrane. Conversely, the lack of folate leads to the retention of these proteins in endoplasmic reticulum. Folate also promoted the switch from inactive (GDP-bound) to active (GTP-bound) GTPases, resulting in the activation of downstream kinases p21-activated kinase and LIM kinase and phosphorylation of the actin-depolymerizing factor cofilin. We have further demonstrated that in A549 cells two GTPases, RhoA and Rac1, but not Cdc42, are immediate sensors of folate status: the siRNA silencing of RhoA or Rac1 blocked effects of folate on cofilin phosphorylation and cellular migration and invasion. The finding that folate modulates metastatic potential of cancer cells was confirmed in an animal model of lung cancer using tail vein injection of A549 cells in SCID mice. A folate-rich diet enhanced lung colonization and distant metastasis to lymph nodes and decreased overall survival (35 versus 63 days for mice on a folate-restricted diet). High folate also promoted epithelial-mesenchymal transition in cancer cells and experimental mouse tumors. Our study provides experimental evidence for a mechanism of metastasis promotion by dietary folate and highlights the interaction between nutrients and metastasis-related signaling.


Asunto(s)
Adenocarcinoma/enzimología , Cofilina 1/metabolismo , Ácido Fólico/administración & dosificación , Neoplasias Pulmonares/enzimología , Proteína de Unión al GTP rac1/fisiología , Proteína de Unión al GTP rhoA/fisiología , Adenocarcinoma/secundario , Administración Oral , Animales , Línea Celular Tumoral , Membrana Celular/enzimología , Movimiento Celular/efectos de los fármacos , Supervivencia Celular , Suplementos Dietéticos , Retículo Endoplásmico/enzimología , Transición Epitelial-Mesenquimal , Ácido Fólico/farmacología , Humanos , Neoplasias Pulmonares/patología , Metástasis Linfática , Masculino , Metilación , Ratones SCID , Trasplante de Neoplasias , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Transducción de Señal , Proteína de Unión al GTP cdc42/metabolismo , Quinasas p21 Activadas/química , Proteína de Unión al GTP rac1/química
3.
PLoS One ; 8(7): e70062, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936142

RESUMEN

Glycine N-methyltransferase (GNMT), an abundant cytosolic enzyme, catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM) to glycine generating S-adenosylhomocysteine and sarcosine (N-methylglycine). This reaction is regulated by 5-methyltetrahydrofolate, which inhibits the enzyme catalysis. In the present study, we observed that GNMT is strongly down regulated in human cancers and is undetectable in cancer cell lines while the transient expression of the protein in cancer cells induces apoptosis and results in the activation of ERK1/2 as an early pro-survival response. The antiproliferative effect of GNMT can be partially reversed by treatment with the pan-caspase inhibitor zVAD-fmk but not by supplementation with high folate or SAM. GNMT exerts the suppressor effect primarily in cells originated from malignant tumors: transformed cell line of non-cancer origin, HEK293, was insensitive to GNMT. Of note, high levels of GNMT, detected in regenerating liver and in NIH3T3 mouse fibroblasts, do not produce cytotoxic effects. Importantly, GNMT, a predominantly cytoplasmic protein, was translocated into nuclei upon transfection of cancer cells. The presence of GNMT in the nuclei was also observed in normal human tissues by immunohistochemical staining. We further demonstrated that the induction of apoptosis is associated with the GNMT nuclear localization but is independent of its catalytic activity or folate binding. GNMT targeted to nuclei, through the fusion with nuclear localization signal, still exerts strong antiproliferative effects while its restriction to cytoplasm, through the fusion with nuclear export signal, prevents these effects (in each case the protein was excluded from cytosol or nuclei, respectively). Overall, our study indicates that GNMT has a secondary function, as a regulator of cellular proliferation, which is independent of its catalytic role.


Asunto(s)
Núcleo Celular/metabolismo , Glicina N-Metiltransferasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Catálisis , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular , Proliferación Celular/efectos de los fármacos , Daño del ADN , Activación Enzimática , Ácido Fólico/química , Ácido Fólico/metabolismo , Expresión Génica , Glicina N-Metiltransferasa/química , Glicina N-Metiltransferasa/genética , Glicina N-Metiltransferasa/farmacología , Humanos , Ratones , Modelos Moleculares , Conformación Molecular , Mutación , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes/farmacología , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/farmacología
4.
Clin Chem Lab Med ; 51(3): 607-16, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23241610

RESUMEN

The importance of proper consumption of dietary folate for human health has been highlighted by an extensive number of publications over several decades. Fortification of grain products with folic acid was initiated with the specific intent to prevent neural tube defects, and the scope of this endeavor is unique in that its target population (women of the periconceptional period) is many times smaller than the population it affects (everyone who ingests fortified grain products). Folate fortification has been wildly successful in terms of its goal; since its inception, the incidence of neural tube defects has markedly decreased. In the wake of this public health triumph, it is important to catalog both the serendipitous benefits and potential side effects of folic acid supplementation. The vitamin is generally regarded as a harmless nutrient based on studies evaluating the safe upper limits of folate intake. In recent years, however, a concern has been raised with respect to a potential downside to folate supplementation; namely, its proposed ability to enhance proliferation of malignant tumors. The current review summarizes the available literature on the effects of folate supplementation and the molecular mechanisms by which high doses of folate may have negative consequences on human health, especially with regard to cancer.


Asunto(s)
Ácido Fólico/efectos adversos , Metástasis de la Neoplasia , Transformación Celular Neoplásica , Suplementos Dietéticos , Ácido Fólico/metabolismo , Ácido Fólico/uso terapéutico , Deficiencia de Ácido Fólico/tratamiento farmacológico , Humanos , Masculino , Neoplasias/etiología , Defectos del Tubo Neural/prevención & control , Neoplasias de la Próstata/patología , Tetrahidrofolato Deshidrogenasa/metabolismo
5.
Biochem Pharmacol ; 72(2): 256-66, 2006 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-16712799

RESUMEN

10-Formyltetrahydrofolate dehydrogenase (FDH) converts 10-formyltetrahydrofolate to tetrahydrofolate (THF). Expression of the enzyme in FDH-deficient cancer cells induces cytotoxicity that can be reversed by supplementation with high concentrations of a reduced folate, 5-formyl-THF (leucovorin). In contrast, non-tumor cells are resistant to FDH. The present study was undertaken to investigate mechanisms that could protect cells against FDH suppressor effects. Using 10 microM leucovorin supplementation of FDH-sensitive A549 cells transfected for FDH expression, we selected clones that have acquired resistance against FDH. Resistant cells expressed high levels of FDH and were capable of growing after withdrawal of leucovorin. These cells, however, have increased doubling time due to prolonged S phase. They also have significantly increased levels of total folate pool and THF/5,10-methylene-THF pool while the level of 10-formyl-THF was two-fold lower than in parental FDH-sensitive cells. We have shown that the FDH-catalyzed reaction proceeds at about a three-fold slower rate at the ratio of 10-formyl-THF/THF corresponding to the resistant cells than at the ratio corresponding to parental sensitive cells, due to product inhibition (KI is 2.35 microM). FDH-resistant cells have strongly up-regulated dihydrofolate reductase (DHFR) that is proposed to be a mechanism for the alteration of folate pools and a key component of the acquired resistance. Elevation of DHFR in A549 cells by transient transfection decreased sensitivity to FDH toxicity and allowed selection of FDH-resistant clones. DHFR-induced repression of FDH catalysis could be an S phase-related metabolic adjustment that provides protection against FDH suppressor effects.


Asunto(s)
Leucovorina/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/antagonistas & inhibidores , Tetrahidrofolato Deshidrogenasa/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Secuencia de Bases , Catálisis , Línea Celular , Cartilla de ADN , Resistencia a Medicamentos , Ácido Fólico/metabolismo , Humanos
6.
Cell Growth Differ ; 13(5): 227-36, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12065246

RESUMEN

Our studies showed that an abundant folate enzyme, 10-formyltetrahydrofolatedehydrogenase (FDH), is strongly down-regulated in several types of cancer on both the mRNA and the protein level. Transient expression of FDH in several human prostate cancer cell lines, a hepatocarcinoma cell line, HepG2, and a lung cancer cell line, A549, suppressed proliferation and resulted in cytotoxicity. In contrast, overexpression of a catalytically inactive FDH mutant did not inhibit proliferation, which suggests that the suppressor effect of FDH is a result of its enzymatic function. Because the FDH substrate, 10-formyltetrahydrofolate, is required for de novo purine biosynthesis, we hypothesized that the inhibitory effects of FDH occur through the depletion of intracellular 10-formyltetrahydrofolate followed by the loss of de novo purine biosynthesis. The ultimate impact is diminished DNA/RNA biosynthesis. Indeed, supplementation of FDH-overexpressing cells with 5-formyltetrahydrofolate or hypoxanthine reversed the FDH growth-inhibitory effects. Hence, down-regulation of FDH in tumors is proposed to be one of the cellular mechanisms that enhance proliferation.


Asunto(s)
Ácido Fólico/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Adenocarcinoma , División Celular/fisiología , Línea Celular Transformada , Regulación hacia Abajo/fisiología , Humanos , Neoplasias Hepáticas , Regeneración Hepática/fisiología , Neoplasias Pulmonares , Masculino , Neoplasias de la Próstata , ARN Mensajero/análisis , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA