Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38474530

RESUMEN

Kombucha is a non-alcoholic beverage, that is increasingly used in the cosmetic industry. The available literature reports the positive effects of kombucha on the skin, in particular its antioxidant action. However, there is a lack of information on skin permeation and the accumulation of active ingredients showing such effects. Skin aging is largely dependent on oxidative stress, therefore in our study we assessed the ex vivo permeation of two types of kombucha (green and black tea) through porcine skin. The antioxidant activity (DPPH, ABTS, FRAP methods) and total polyphenol content of these extracts were determined before and after permeation testing. Moreover, the content of selected phenolic acids as well as caffeine was assessed. Skin permeation was determined using a Franz diffusion cell. The antioxidant activity of both Kombuchas was found to be high. In addition, gallic acid, chlorogenic acid, protocatechuic acid, coumaric acid, m-hydroxybenzoic acid, and caffeine were identified. A 24-h ex vivo study showed the permeation of some phenolic acids and caffeine and their accumulation in the skin. Our results confirm the importance of studying the skin permeation of what are still little known ingredients in cosmetic preparations. Evaluation of the accumulation of these ingredients can guarantee the efficacy of such preparations.


Asunto(s)
Antioxidantes , Cosméticos , Hidroxibenzoatos , Animales , Porcinos , Antioxidantes/análisis , Cafeína , Piel/química ,
2.
Front Bioeng Biotechnol ; 11: 1133345, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36890919

RESUMEN

Epilobium angustifolium L. is a medicinal plant well known for its anti-inflammatory, antibacterial, antioxidant, and anticancer properties related to its high polyphenols content. In the present study, we evaluated the antiproliferative properties of ethanolic extract of E. angustifolium (EAE) against normal human fibroblasts (HDF) and selected cancer cell lines, including melanoma (A375), breast (MCF7), colon (HT-29), lung (A549) and liver (HepG2). Next, bacterial cellulose (BC) membranes were applied as a matrix for the controlled delivery of the plant extract (BC-EAE) and characterized by thermogravimetry (TG), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) images. In addition, EAE loading and kinetic release were defined. Finally, the anticancer activity of BC-EAE was evaluated against the HT-29 cell line, which presented the highest sensitivity to the tested plant extract (IC50 = 61.73 ± 6.42 µM). Our study confirmed the biocompatibility of empty BC and the dose and time-dependent cytotoxicity of the released EAE. The plant extract released from BC-2.5%EAE significantly reduced cell viability to 18.16% and 6.15% of the control values and increased number apoptotic/dead cells up to 37.53% and 66.90% after 48 and 72 h of treatment, respectively. In conclusion, our study has shown that BC membranes could be used as a carrier for the delivery of higher doses of anticancer compounds released in a sustained manner in the target tissue.

3.
Molecules ; 27(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36080251

RESUMEN

The plants of the genus Rubus (R.) are applied as antiseptic agents in the treatment of skin diseases. Despite the great interest in plants of this genus, there are few reports on the antioxidant and biological activities of preparations obtained from the leaves of these plants. Therefore, we decided to evaluate the antioxidant activity of preparations from leaves of wild plant species of the genus Rubus using the frequently applied DPPH, ABTS, and FRAP methods, as well as to determine the total polyphenol content using the Folin−Ciocalteau method and perform qualitative evaluation by gas chromatography−mass spectrometry (GC-MS). The bactericidal and fungicidal activities of the obtained preparations were evaluated by applying laboratory tests: using the disc and the well methods based on the standards EN 13697:2019, EN 13697:2015, and EN 1500:2013. Microbiological tests of the plant preparations against bacteria, fungi, and yeasts isolated from the environment and against reference strains were performed. Moreover, antimicrobial testing of antibiotics against the tested strains was performed for comparison. The n-octanol/water partition coefficient of the obtained preparations was determined by the shake-flask method to determine their lipophilicity. According to the results, a high content of polyphenols and other antioxidant and biologically active compounds can be thought of as the parameter responsible for the effective activity of plant preparations obtained from wild plant species of the genus Rubus. The methods for determining bactericidal and fungicidal activity clearly demonstrates that preparations with reduced ethanol content exhibit bactericidal and fungicidal activity on surfaces. Testing of hand disinfection by means of rubbing with the preparations confirmed their antimicrobial activity against Escherichia coli K12 NCTC 10538. The obtained results show that the tested preparations exhibit on average two times lower activity against the reference bacterial strains than comparable antibiotics. The preparations obtained from the leaves of R. idaeus L. and R. fruticosus L. could complement classical antibiotics. While environmental bacteria showed a similar response to the preparations and antibiotics, their sensitivity was about one-third less than that of the reference strains. Our studies have shown that the obtained preparations are highly hydrophilic (logP < 0). Thus, these preparations can only be used in lipid bilayers in the aqueous core of liposomes, not in the lipid envelope.


Asunto(s)
Antiinfecciosos , Rubus , Antibacterianos/análisis , Antibacterianos/farmacología , Antiinfecciosos/química , Antioxidantes/química , Extractos Vegetales/química , Hojas de la Planta/química , Polifenoles/análisis , Polifenoles/farmacología , Rubus/química
4.
Front Pharmacol ; 13: 896706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846995

RESUMEN

Epilobium angustifolium L. is an ethnomedicinal plant known as a medicinal plant in many regions of the world, among others, in various skin diseases. Despite the great interest in this plant, there are still few reports of biological activity of ready-made dermatological or cosmetical preparations containing the E. angustifolium extracts. The antioxidant, anti-ageing, anti-inflammatory, antibacterial properties and toxicity, wound healing, and skin permeation of topical hydrogels containing E. angustifolium extracts (HEas) was assessed. First, the plant extracts were prepared using three solvents: 70% (v/v) ethanol, 70% (v/v) isopropanol and water, next by preparing hydrogels witch by dry extracts (HEa-EtOH), (HEa-iPrOH) and (HEa-WA), respectively. Finally, the content of selected phenolic acids in the HEas was evaluated by high-performance liquid chromatography (HPLC). All the HEas were characterized by high antioxidant activity. The most increased antibacterial activity was observed for a strain of Streptococcus pneumoniae ATCC 49619, Escherichia coli, Enterococcus faecalis ATCC 29212, Enterococcus faecium, Sarcina lutea ATCC 9341 and Bacillus pseudomycoides, while the strains of Streptococcus epidermidis, Bacillus subtilis, and Staphylococcus aureus were the least sensitive. All the HEas showed a reduction in the activity of lipoxygenase enzymes, proteases, and inhibition of protein denaturation. The HEa-EtOH and HEa-iPrOH also enhanced the wound healing activity of HDF cells. Additionally, in vitro penetration studies were performed using the Franz diffusion cells. These studies showed that the active ingredients contained in E. angustifolium penetrate through human skin and accumulate in it. Furthermore, the hydrogels containing E. angustifolium extracts showed a broad spectrum of activity. Therefore, they can be considered as an interesting alternative for dermatologic and cosmetic preparations.

5.
Molecules ; 26(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885770

RESUMEN

Epilobium angustifolium L. is a popular medicinal plant found in many regions of the world. This plant contains small amounts of essential oil whose composition and properties have not been extensively investigated. There are few reports in the literature on the antioxidant and antifungal properties of this essential oil and the possibility of applying it as a potential promoter of the skin penetration of drugs. The essential oil was obtained by distillation using a Clavenger type apparatus. The chemical composition was analyzed by the GC-MS method. The major active compounds of E. angustifolium L. essential oil (EOEa) were terpenes, including α-caryophyllene oxide, eucalyptol, ß-linalool, camphor, (S)-carvone, and ß-caryophyllene. The analyzed essential oil was also characterized by antioxidant activity amounting to 78% RSA (Radical Scavenging Activity). Antifungal activity against the strains Aspergillus niger, A. ochraceus, A. parasiticum, and Penicillium cyclopium was also determined. The largest inhibition zone was observed for strains from the Aspergillus group. The EOEa enhanced the percutaneous penetration of ibuprofen and lidocaine. After a 24 h test, the content of terpene in the skin and the acceptor fluid was examined. It has been shown that the main compounds contained in the essential oil do not penetrate through the skin, but accumulate in it. Additionally, FTIR-ATR analysis showed a disturbance of the stratum corneum (SC) lipids caused by the essential oil application. Due to its rich composition and high biological activity, EOEa may be a potential candidate to be applied, for example, in the pharmaceutical or cosmetic industries. Moreover, due to the reaction of the essential oil components with SC lipids, the EOEa could be an effective permeation enhancer of topically applied hydrophilic and lipophilic drugs.


Asunto(s)
Epilobium/química , Micosis/tratamiento farmacológico , Aceites Volátiles/química , Extractos Vegetales/química , Antifúngicos/química , Antifúngicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Aspergillus/efectos de los fármacos , Aspergillus/patogenicidad , Cromatografía de Gases y Espectrometría de Masas , Humanos , Micosis/microbiología , Aceites Volátiles/farmacología , Penicillium/efectos de los fármacos , Penicillium/patogenicidad , Extractos Vegetales/farmacología , Plantas Medicinales/química , Piel/efectos de los fármacos , Absorción Cutánea/efectos de los fármacos , Terpenos/química , Terpenos/farmacología
6.
Molecules ; 26(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200200

RESUMEN

Epilobium angustifolium L. is a popular and well-known medicinal plant. In this study, an attempt to evaluate the possibility of using this plant in preparations for the care and treatment of skin diseases was made. The antioxidant, antiaging and anti-inflammatory properties of ethanolic extracts from Epilobium angustifolium (FEE) were assessed. Qualitative and quantitative evaluation of extracts chemically composition was performed by gas chromatography with mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). The total polyphenol content (TPC) of biologically active compounds, such as the total content of polyphenols (TPC), flavonoids (TFC), and assimilation pigments, as well as selected phenolic acids, was assessed. FEE was evaluated for their anti-inflammatory and antiaging properties, achieving 68% inhibition of lipoxygenase activity, 60% of collagenase and 49% of elastase. FEE also showed high antioxidant activity, reaching to 87% of free radical scavenging using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 59% using 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Additionally, in vitro penetration studies were performed using two vehicles, i.e., a hydrogel and an emulsion containing FEE. These studies showed that the active ingredients contained in FEE penetrate through human skin and accumulate in it. The obtained results indicate that E. angustifolium may be an interesting plant material to be applied as a component of cosmetic and dermatological preparations with antiaging and anti-inflammatory properties.


Asunto(s)
Cosméticos/química , Fármacos Dermatológicos/química , Epilobium/química , Extractos Vegetales/química , Antiinflamatorios/química , Antioxidantes/química , Compuestos de Bifenilo/química , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Plantas Medicinales/química , Polifenoles/química , Piel/efectos de los fármacos
7.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200927

RESUMEN

Bacterial cellulose membranes (BCs) are becoming useful as a drug delivery system to the skin. However, there are very few reports on their application of plant substances to the skin. Komagataeibacter xylinus was used for the production of bacterial cellulose (BC). The BC containing 5% and 10% ethanolic extract of Epilobium angustifolium (FEE) (BC-5%FEE and BC-10%FEE, respectively) were prepared. Their mechanical, structural, and antioxidant properties, as well as phenolic acid content, were evaluated. The bioavailability of BC-FESs using mouse L929 fibroblasts as model cells was tested. Moreover, In Vitro penetration through the pigskin of the selected phenolic acids contained in FEE and their accumulation in the skin after topical application of BC-FEEs was examined. The BC-FEEs were characterized by antioxidant activity. The BC-5% FEE showed relatively low toxicity to healthy mouse fibroblasts. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), 3-hydroxybenzoic acid (3-HB), and caffeic acid (CA) found in FEE were also identified in the membranes. After topical application of the membranes to the pigskin penetration of some phenolic acid and other antioxidants through the skin as well as their accumulation in the skin was observed. The bacterial cellulose membrane loaded by plant extract may be an interesting solution for topical antioxidant delivery to the skin.


Asunto(s)
Antioxidantes/administración & dosificación , Celulosa/química , Epilobium/química , Fibroblastos/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Piel/efectos de los fármacos , Administración Tópica , Animales , Bacterias/química , Fibroblastos/metabolismo , Ratones , Piel/metabolismo , Porcinos
8.
Molecules ; 26(2)2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33435259

RESUMEN

Epilobium angustifolium L. is applied as an antiseptic agent in the treatment of skin diseases. However, there is a lack of information on human skin penetration of active ingredients with antioxidative potential. It seems crucial because bacterial infections of skin and subcutaneous tissue are common and partly depend on oxidative stress. Therefore, we evaluated in vitro human skin penetration of fireweed ethanol-water extracts (FEEs) by determining antioxidant activity of these extracts before and after penetration study using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and Folin-Ciocalteu methods. Microbiological tests of extracts were done. The qualitative and quantitative evaluation was performed using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC-UV) methods. The in vitro human skin penetration using the Franz diffusion chamber was assessed. The high antioxidant activity of FEEs was found. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), and caffeic acid (CA) were identified in the extracts. The antibacterial activities were found against Serratia lutea, S. marcescens, Bacillus subtilis, B. pseudomycoides, and B. thuringiensis and next Enterococcus faecalis, E. faecium, Streptococcus pneumoniae, Pseudomonas aeruginosa, and P. fluorescens strains. In vitro penetration studies showed the penetration of some phenolic acids and their accumulation in the skin. Our results confirm the importance of skin penetration studies to guarantee the efficacy of formulations containing E. angustifolium extracts.


Asunto(s)
Antiinfecciosos , Antioxidantes , Bacterias/crecimiento & desarrollo , Bassia scoparia/química , Extractos Vegetales , Absorción Cutánea , Piel/metabolismo , Antiinfecciosos/química , Antiinfecciosos/farmacocinética , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Etanol/química , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacocinética , Extractos Vegetales/farmacología , Piel/microbiología , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA