Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Bot ; 110(10): e16239, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37668113

RESUMEN

PREMISE: Under uncertain pollinator visit conditions, plants often exhibit long flowering periods and generalized pollination systems. Flowering of the gynodioecious shrub Daphne jezoensis occurs in early spring in cool temperate forests. Pollination by nocturnal moths is expected, given the species' tubular-shaped flowers with sweet fragrance and nectar. However, the effectiveness of nocturnal moths under cool conditions is unknown. We evaluated the relative importance of diurnal and nocturnal visitors as pollinators in early spring. METHODS: We investigated flowering duration, flower visitors, and floral scents in a natural population. We experimentally exposed flowers to visitors only during daytime or nighttime using bagging treatments and evaluated the contributions of diurnal and nocturnal insects to fruit set, pollen dispersal distance, and paternity diversity using 16 microsatellite markers. RESULTS: Female flowers lasted ~3 wk, which was ~8 d longer than the flowering period of hermaphrodites. Various insects, including Coleoptera, Diptera, Hymenoptera, and Lepidoptera, visited the flowers during both daytime and nighttime. Flowers emitted volatiles, such as lilac aldehyde isomers and ß-ocimene, which are known to attract moths. Fruit-set rate in the night-open treatment was similar to or higher than that in the day-open treatment. However, pollen dispersal distance in the night-open treatment was shorter than that in the day-open treatment. Paternity diversity was similar in day-open and night-open treatments. CONCLUSIONS: Early-blooming plants ensure pollen receipt and dispersal by having a long flowering period and using both diurnal and nocturnal flower visitors, suggesting the importance of a generalized pollination system under uncertain pollinator visit conditions.


Asunto(s)
Daphne , Mariposas Nocturnas , Animales , Frutas , Néctar de las Plantas , Polinización , Flores , Insectos , Polen
2.
Nature ; 542(7639): 91-95, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28117440

RESUMEN

Temperature is a primary driver of the distribution of biodiversity as well as of ecosystem boundaries. Declining temperature with increasing elevation in montane systems has long been recognized as a major factor shaping plant community biodiversity, metabolic processes, and ecosystem dynamics. Elevational gradients, as thermoclines, also enable prediction of long-term ecological responses to climate warming. One of the most striking manifestations of increasing elevation is the abrupt transitions from forest to treeless alpine tundra. However, whether there are globally consistent above- and belowground responses to these transitions remains an open question. To disentangle the direct and indirect effects of temperature on ecosystem properties, here we evaluate replicate treeline ecotones in seven temperate regions of the world. We find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground-layer plant community nitrogen to phosphorus ratios across all regions. Further, elevation-driven changes in plant nutrients were associated with changes in soil organic matter content and quality (carbon to nitrogen ratios) and microbial properties. Combined, our identification of direct and indirect temperature controls over plant communities and soil properties in seven contrasting regions suggests that future warming may disrupt the functional properties of montane ecosystems, particularly where plant community reorganization outpaces treeline advance.


Asunto(s)
Altitud , Bosques , Temperatura , Árboles/metabolismo , Biodiversidad , Carbono/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Suelo/química , Microbiología del Suelo , Tundra
3.
Oecologia ; 154(1): 119-28, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17674052

RESUMEN

Floral color change has been recognized as a pollination strategy, but its relative effectiveness has been evaluated insufficiently with respect to other floral traits. In this study, effects of floral color change on the visitation pattern of bumblebees were empirically assessed using artificial flowers. Four inflorescence types were postulated as strategies of flowering behavior: type 1 has no retention of old flowers, resulting in a small display size; type 2 retains old flowers without nectar production; type 3 retains old flowers with nectar; and type 4 retains color-changed old flowers without nectar. Effects of these treatments varied depending on both the total display size (single versus multiple inflorescences) and the pattern of flower-opening. In the single inflorescence experiment, a large floral display due to the retention of old flowers (types 2-4) enhanced pollinator attraction, and the number of flower visits per stay decreased with color change (type 4), suggesting a decrease in geitonogamous pollination. Type-4 plants also reduced the foraging time of bees in comparison with type-2 plants. In the multiple inflorescence experiment, the retention of old flowers did not contribute to pollinator attraction. When flowering occurred sequentially within inflorescences, type-4 plants successfully decreased the number of visits and the foraging time in comparison with type-2 plants. In contrast, floral color change did not influence the number of visits, and it extended the foraging time when flowering occurred simultaneously within inflorescences but the opening of inflorescences progressed sequentially within a plant. Therefore, the effectiveness of floral color change is highly susceptible to the display size and flowering pattern within plants, and this may limit the versatility of the color change strategy in nature.


Asunto(s)
Abejas/fisiología , Flores/fisiología , Polen/fisiología , Polinización/fisiología , Animales , Color
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA