Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446408

RESUMEN

Airway epithelium repair after infection consists of wound repair, re-synthesis of the extracellular matrix (ECM), and tight junction proteins. In humans, EPs® 7630 obtained from Pelargonium sidoides roots reduces the severity and duration of acute respiratory tract infections. The effect of EPs® 7630 on tissue repair of rhinovirus-16 (RV-16) infected and control human airway epithelial cells was assessed for: (i) epithelial cell proliferation by manual cell counts, (ii) epithelial wound repair by "scratch assay", (iii) ECM composition by Western-blotting and cell-based ELISA, and (iv) epithelial tight junction proteins by Western-blotting. EPs® 7630 stimulated cell proliferation through cAMP, CREB, and p38 MAPK. EPs® 7630 significantly improved wound repair. Pro-inflammatory collagen type-I expression was reduced by EPs® 7630, while fibronectin was increased. Virus-binding tight junction proteins desmoglein2, desmocollin2, ZO-1, claudin1, and claudin4 were downregulated by EPs® 7630. The RV16-induced shift of the ECM towards the pro-inflammatory type was prevented by EPs® 7630. Most of the effects of EPs® 7630 on tissue repair and regeneration were sensitive to inhibition of cAMP-induced signaling. The data suggest that EPs® 7630-dependent modification of epithelial cell metabolism and function might underlie the faster recovery time from viral infections, as reported by others in clinical studies.


Asunto(s)
Infecciones del Sistema Respiratorio , Virus , Humanos , Extractos Vegetales/farmacología , Proteínas de Uniones Estrechas/metabolismo , Infecciones del Sistema Respiratorio/metabolismo , Células Epiteliales/metabolismo , Uniones Estrechas/metabolismo
2.
Front Pharmacol ; 13: 1007746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304165

RESUMEN

It is an often-neglected fact that extracts derived from the very same plant can differ significantly in their phytochemical composition, and thus also in their pharmacokinetic and pharmacodynamic properties which are the basis for their clinical efficacy and safety. The Ginkgo biloba L. [Ginkgoaceae] special extract EGb 761® is one of the best-studied plant extracts in the world. In the present review, using that extract as a paradigm, we describe insights how climate, the harvest region, processing of the plant material, the drying process, the extraction solvents, and the details of the subsequent process steps substantially impact the quality and uniformity of the final extract. We highlight the importance of regulating active constituent levels and consistent reduction of undesired substances in herbal extracts. This is accomplished by a controlled production process and corresponding analytical specifications. In conclusion, since extracts derived from the same plant can have very different phytochemical compositions, results from pharmacological, toxicological and clinical studies gained with one specific extract cannot be extrapolated to other extracts that were generated using different production processes. We propose that the heterogenous nature of extracts should be meticulously considered when evaluating the efficacy and safety of plant-derived remedies.

3.
Front Pharmacol ; 13: 953205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176427

RESUMEN

Background: Research on medicinal plants and extracts derived from them differs from studies performed with single compounds. Extracts obtained from plants, algae, fungi, lichens or animals pose some unique challenges: they are multicomponent mixtures of active, partially active and inactive substances, and the activity is often not exerted on a single target. Their composition varies depending on the method of preparation and the plant materials used. This complexity and variability impact the reproducibility and interpretation of pharmacological, toxicological and clinical research. Objectives: This project develops best practice guidelines to ensure reproducibility and accurate interpretations of studies using medicinal plant extracts. The focus is on herbal extracts used in pharmacological, toxicological, and clinical/intervention research. Specifically, the consensus-based statement focuses on defining requirements for: 1) Describing the plant material/herbal substances, herbal extracts and herbal medicinal products used in these studies, and 2) Conducting and reporting the phytochemical analysis of the plant extracts used in these studies in a reproducible and transparent way. The process and methods: We developed the guidelines through the following process: 1) The distinction between the three main types of extracts (extract types A, B, and C), initially conceptualised by the lead author (MH), led the development of the project as such; 2) A survey among researchers of medicinal plants to gather global perspectives, opportunities, and overarching challenges faced in characterising medicinal plant extracts under different laboratory infrastructures. The survey responses were central to developing the guidelines and were reviewed by the core group; 3) A core group of 9 experts met monthly to develop the guidelines through a Delphi process; and. 4) The final draft guidelines, endorsed by the core group, were also distributed for feedback and approval to an extended advisory group of 20 experts, including many journal editors. Outcome: The primary outcome is the "Consensus statement on the Phytochemical Characterisation of Medicinal Plant extracts" (ConPhyMP) which defines the best practice for reporting the starting plant materials and the chemical methods recommended for defining the chemical compositions of the plant extracts used in such studies. The checklist is intended to be an orientation for authors in medicinal plant research as well as peer reviewers and editors assessing such research for publication.

4.
Planta Med ; 88(5): 398-404, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33862645

RESUMEN

The Ginkgo extract EGb 761® manufactured with leaves of Ginkgo biloba has been continuously produced over decades at a large scale and is used as a clinically proven remedy for, among other things, the improvement of age-associated cognitive impairment and quality of life in patients with mild dementia. It belongs to the class of extracts addressed as quantified extracts according to the European Pharmacopeia. Accordingly, several compounds (e.g., flavone glycosides and terpene trilactones) are acknowledged to contribute to its clinical efficacy. Covering only about 30% of the mass balance, these characterized compounds are accompanied by a larger fraction of additional compounds, which might also contribute to the clinical efficacy and safety of the extract. As part of our systematic research to fully characterize the constituents of Ginkgo extract EGb 761, we focus on the structural class of proanthocyanidins in the present study. Structural insights into the proanthocyanidins present in EGb 761 and a quantitative method for their determination using HPLC are shown. The proanthocyanidins were found to be of oligomeric to polymeric structure, which yield delphinidin and cyanidin as main building blocks after acidic hydrolysis. A validated HPLC method for quantification of the anthocyanidins was developed in which delphinidin and cyanidin were detected after hydrolysis of the proanthocyanidins. The content of proanthocyanidins in Ginkgo extract EGb 761 was found to be approximately 7%.


Asunto(s)
Ginkgo biloba , Proantocianidinas , Ginkgo biloba/química , Humanos , Extractos Vegetales/química , Calidad de Vida
5.
Front Pharmacol ; 12: 757666, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34759825

RESUMEN

Treatment options for COVID-19 are currently limited. Drugs reducing both viral loads and SARS-CoV-2-induced inflammatory responses would be ideal candidates for COVID-19 therapeutics. Previous in vitro and clinical studies suggest that the proprietary Pelargonium sidoides DC. root extract EPs 7630 has antiviral and immunomodulatory properties, limiting symptom severity and disease duration of infections with several upper respiratory viruses. Here we assessed if EPs 7630 affects SARS-CoV-2 propagation and the innate immune response in the human lung cell line Calu-3. In direct comparison to other highly pathogenic CoV (SARS-CoV, MERS-CoV), SARS-CoV-2 growth was most efficiently inhibited at a non-toxic concentration with an IC50 of 1.61 µg/ml. Particularly, the cellular entry step of SARS-CoV-2 was significantly reduced by EPs 7630 pretreatment (10-100 µg/ml) as shown by spike protein-carrying pseudovirus particles and infectious SARS-CoV-2. Using sequential ultrafiltration, EPs 7630 was separated into fractions containing either prodelphinidins of different oligomerization degrees or small molecule constituents like benzopyranones and purine derivatives. Prodelphinidins with a low oligomerization degree and small molecule constituents were most efficient in inhibiting SARS-CoV-2 entry already at 10 µg/ml and had comparable effects on immune gene regulation as EPs 7630. Downregulation of multiple pro-inflammatory genes (CCL5, IL6, IL1B) was accompanied by upregulation of anti-inflammatory TNFAIP3 at 48 h post-infection. At high concentrations (100 µg/ml) moderately oligomerized prodelphinidins reduced SARS-CoV-2 propagation most efficiently and exhibited pronounced immune gene modulation. Assessment of cytokine secretion in EPs 7630-treated and SARS-CoV-2-coinfected Calu-3 cells showed that pro-inflammatory cytokines IL-1ß and IL-6 were elevated whereas multiple other COVID-19-associated cytokines (IL-8, IL-13, TNF-α), chemokines (CXCL9, CXCL10), and growth factors (PDGF, VEGF-A, CD40L) were significantly reduced by EPs 7630. SARS-CoV-2 entry inhibition and the differential immunomodulatory functions of EPs 7630 against SARS-CoV-2 encourage further in vivo studies.

6.
Pharm Biol ; 59(1): 438-443, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33886418

RESUMEN

CONTEXT: Ginkgo biloba L. (Ginkgoaceae) leaf extract is one of the most frequently sold herbal extracts. There have been reports on poor quality and adulteration of ginkgo leaf extracts or the powdered plant material with extracts or powder of Styphnolobium japonicum (L.) Schott (Fabaceae) (syn. Sophora japonica L.) fruits, which is rich in flavone glycosides. OBJECTIVE: The study investigates whether ginkgo leaves genuinely contain genistein and sophoricoside and whether these two substances could be used as markers to detect adulterations with sophora fruits. MATERIALS AND METHODS: A total of 33 samples of dried ginkgo leaves were sourced from controlled plantations in China, the USA, and France. After extraction, the samples were analyzed using two high-performance liquid chromatography (HPLC) coupled with UV/HRMS methods for the detection of genistein and sophoricoside, respectively. Chromatograms were compared to standard reference materials. RESULTS: In none of the tested ginkgo samples, neither genistein nor sophoricoside could be detected. The applied method was designed to separate genistein from apigenin. The latter is a genuine compound of ginkgo leaves, and its peak may have been previously misidentified as genistein because of the same molecular mass. The method for the detection of sophoricoside allows identification of the adulteration with sophora fruit without prior hydrolysis. By both HPLC methods, it was possible to detect adulterations of ≥2% sophora fruits in the investigated ginkgo extract. CONCLUSION: The methods allow unambiguous detection of adulterations of ginkgo leaves with sophora fruits, using genistein and sophoricoside as marker compounds.


Asunto(s)
Ginkgo biloba/química , Extractos Vegetales/química , Sophora/química , Benzopiranos/análisis , Benzopiranos/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Contaminación de Medicamentos , Frutas , Genisteína/análisis , Genisteína/aislamiento & purificación , Espectrometría de Masas , Extractos Vegetales/análisis , Hojas de la Planta
7.
Phytomedicine ; 23(7): 754-62, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26626192

RESUMEN

BACKGROUND: Rhodiola rosea L. Crassulaceae, root (Golden Root, Arctic Root) is a high-value herbal medicinal product, registered in the UK for the treatment of stress-induced fatigue, exhaustion and anxiety based on traditional use and used throughout Europe as a herbal medicinal product for similar indications. Numerous unregistered supplements are also available. There are several Chinese species used in traditional Chinese medicine (TCM), including Rhodiola crenulata (Hook.f. & Thomoson) that is believed to be a common adulterant in the R. rosea value chain. AIMS: The project is embedded in a larger study aiming to investigate the diverse value chains that lead to the production of R. rosea as an herbal medicinal product or supplement. Here we focus on a comparison of the quality of the finished products and assess any phytochemical variation between products registered under the Traditional Herbal Medicine Products Directive (THMPD) and products obtained from the market without any registration (i.e. generally unlicensed supplements). Our key aim is to establish the extent of the problem in terms of adulteration of consumer products claiming to contain R. rosea (or R. crenulata). METHODS: Approximately 40 commercial products (granulated powders and extracts) were sourced from different suppliers. We analysed these samples using high performance thin layer chromatography (HPTLC), mass spectrometry (MS) and (1)H NMR spectroscopy coupled with multi-variate analysis software following a method previously developed by our group for the analysis of turmeric products. RESULTS: We investigate the phytochemistry of the different species and assess the potential of R. crenulata as an adulterant at the end of the R. rosea value chains. The consistency of the products varies significantly. Approximately one fifth of commercial products that claimed to be R. rosea did not contain rosavin (the key reference markers used to distinguish R. rosea from related species). Moreover some products appeared not to contain salidroside, another marker compound found in other Rhodiola species. Approximately 80% of the remaining commercial products were lower in rosavin content than the registered products and appeared to be adulterated with other Rhodiola species. CONCLUSIONS: The variation in phytochemical constituents present in Rhodiola products available to European buyers via the internet and other sources is a major cause for concern. Adulteration with different species, and other sometimes unknown adulterants, appears to be commonplace. Good quality systems and manufacturing practices, including those required under the THMPD, enable consumers to have confidence that products are authentic and meet a high specification for quality and safety.


Asunto(s)
Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/normas , Rhodiola/química , Cromatografía en Capa Delgada , Curcuma , Suplementos Dietéticos , Contaminación de Medicamentos , Glucósidos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Metabolómica , Fenoles , Extractos Vegetales/análisis , Extractos Vegetales/normas , Control de Calidad , Estándares de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA