Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 114: 154738, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36940579

RESUMEN

BACKGROUND: Malaria remains one of the major health concerns, especially in tropical countries. Although drugs such as artemisinin-based combinations are efficient for treating Plasmodium falciparum, the growing threat from multi-drug resistance has become a major challenge. Thus, there is a constant need to identify and validate new combinations to sustain current disease control strategies to overcome the challenge of drug resistance in the malaria parasites. To meet this demand, liquiritigenin (LTG) has been found to positively interact in combination with the existing clinically used drug chloroquine (CQ), which has become unfunctional due to acquired drug resistance. PURPOSE: To evaluate the best interaction between LTG and CQ against CQ- resistant strain of P. falciparum. Furthermore, the in vivo antimalarial efficacy and possible mechanism of action of the best combination was also assessed. METHODS: The in vitro anti-plasmodial potential of LTG against CQ- resistant strain K1 of P. falciparum was tested using Giemsa staining method. The behaviour of the combinations was evaluated using the fix ratio method and evaluated the interaction of LTG and CQ by calculating the fractional inhibitory concentration index (FICI). Oral toxicity study was carried out in a mice model. In vivo antimalarial efficacy of LTG alone and in combination with CQ was evaluated using a four-day suppression test in a mouse model. The effect of LTG on CQ accumulation was measured using HPLC and the rate of alkalinization of the digestive vacuole. Cytosolic Ca2+ level, mitochondrial membrane potential, caspase-like activity, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and Annexin V Apoptosis assay to assess anti-plasmodial potential. Proteomics analysis was evaluated by LC-MS/MS analysis. RESULTS: LTG possesses anti-plasmodial activity on its own and it showed to be an adjuvant of CQ. In in vitro studies, LTG showed synergy with CQ only in the ratio (CQ: LTG-1:4) against CQ-resistant strain (K1) of P. falciparum. Interestingly, in vivo studies, LTG in combination with CQ showed higher chemo-suppression and enhanced mean survival time at much lower concentrations compared to individual doses of LTG and CQ against CQ- resistant strain (N67) of Plasmodium yoelli nigeriensis. LTG was found to increase the CQ accumulation into digestive vacuole, reducing the rate of alkalinization, in turn increasing cytosolic Ca2+ level, loss of mitochondrial potential, caspase-3 activity, DNA damage and externalization of phosphatidylserine of the membrane (in vitro). These observations indicate the involvement of apoptosis-like death of P. falciparum that might be due to the accumulation of CQ. CONCLUSION: LTG showed synergy with CQ in the ratio LTG: CQ, 4:1) in vitro and was able to curtail the IC50 of CQ and LTG. Interestingly, in vivo in combination with CQ, LTG showed higher chemo-suppression as well as enhanced mean survival time at a much lower concentrations of both the partners as compared to an individual dose of CQ and LTG. Thus, synergistic drug combination offers the possibility to enhance CQ efficacy in chemotherapy.


Asunto(s)
Antimaláricos , Malaria , Animales , Ratones , Cloroquina/farmacología , Antimaláricos/farmacología , Cromatografía Liquida , Vacuolas , Espectrometría de Masas en Tándem , Malaria/tratamiento farmacológico , Plasmodium falciparum , Apoptosis , Resistencia a Medicamentos , Modelos Animales de Enfermedad
2.
FEBS Open Bio ; 9(12): 2025-2040, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31050202

RESUMEN

Multidrug-resistant Staphylococcus aureus infections place a huge burden on the healthcare sector and the wider community. An increasing rate of infections caused by methicillin-resistant Staphylococcus aureus (MRSA) has necessitated the development of alternative agents. We previously reported that usnic acid (UA) has activity against MRSA; here, we report the effect of UA in combination with norfloxacin on the drug resistance of MRSA clinical isolates. We observed that the combination of UA-norfloxacin significantly reduces the bacterial burden in mouse models infected with S. aureus, without causing any detectable associated toxicity. Proteomic analysis indicated that UA-norfloxacin induces oxidative stress within cells, which leads to membrane damage and inhibits metabolic activity and biosynthesis of peptidoglycan and fatty acids. Collectively, this study provides evidence that UA in combination with norfloxacin may be a potential candidate for development into a resistance-modifying agent for the treatment of invasive MRSA infections.


Asunto(s)
Benzofuranos/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Animales , Antibacterianos/farmacología , Resistencia a Medicamentos , Sinergismo Farmacológico , Ácidos Grasos/biosíntesis , Ácidos Grasos/metabolismo , Masculino , Staphylococcus aureus Resistente a Meticilina/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Norfloxacino/farmacología , Peptidoglicano/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo
3.
Phytomedicine ; 30: 1-9, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28545664

RESUMEN

BACKGROUND: Flacourtia indica is especially popular among the various communities of many African countries where it is being used traditionally for the treatment of malaria. In our previous report, we have identified some phenolic glycosides from the aerial parts of F. indica as promising antiplasmodial agents under in vitro conditions. PURPOSE: Antimalarial bioprospection of F. indica derived phenolic glycoside in Swiss mice (in vivo) with special emphasis on its mode of action. METHODS: Chloroquine sensitive strain of Plasmodium falciparum was routinely cultured and used for the in vitro studies. The in vivo antimalarial potential of phenolic glycoside was evaluated against P. berghei in Swiss mice through an array of parameters viz., hematological, biochemical, chemo-suppression and mean survival time. RESULTS: 2-(6-benzoyl-ß-d-glucopyranosyloxy)-7-(1α, 2α, 6α-trihydroxy-3-oxocyclohex-4-enoyl)-5-hydroxybenzyl alcohol (CPG), a phenolic glycoside isolated from the aerial parts of F. indica was found to exhibit promising antiplasmodial activity by arresting the P. falciparum growth at the trophozoite stage. Spectroscopic investigations reveal that CPG possesses a strong binding affinity with free heme moieties. In addition, these interactions lead to the inhibition of heme polymerization in malaria parasite, augmenting oxidative stress, and delaying the rapid growth of parasite. Under in-vivo condition, CPG exhibited significant antimalarial activity against P. berghei at 50 and 75mg/kg body weight through chemo-suppression of parasitemia and ameliorating the parasite induced inflammatory and oxidative (hepatic) imbalance in the experimental mice. CONCLUSION: CPG was found to be a potential antimalarial constituent of F. indica with an explored mechanism of action, which also offers the editing choices for developing CPG based antimalarial chemotypes.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Glicósidos/farmacología , Plasmodium falciparum/efectos de los fármacos , Salicaceae/química , Animales , Cloroquina/farmacología , Glicósidos/química , Glicósidos/aislamiento & purificación , Hemo/metabolismo , Malaria/tratamiento farmacológico , Malaria/metabolismo , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Fenoles/uso terapéutico , Plantas Medicinales/química , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA