Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Med Mushrooms ; 26(4): 29-39, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523447

RESUMEN

To study the best substrate for the Indian subcontinent, four different substrates (sawdust + wheat bran, wheat straw + wheat bran + corn cobs, sawdust + corn cobs and wheat straw + wheat bran) were screened for six different Flammulina velutipes strains. The antioxidant and antibacterial properties were studied for these strains. In study it was found that the strain DMRX-767 and DMRX-768 were the most promising for yield and biological efficiency in all substrates and wheat straw + wheat bran being the best with respect to BE. To corroborate the findings, the best strain and best substrate trails were repeated. DMRX-767 and DMRX-768 were the most promising for yield and biological efficiency in all substrates, with wheat straw+wheat bran were again found the best. The methanolic extract of strain DMRX-166 showed highest antibacterial properties as highest inhibition is found for Bacillus subtilis and Pseudomonas syringae. However, DMRO-253 inhibited Ralstonia solanacearum and Xanthomonas campestris. DMRX-768 has the best scavenging ability followed by DMRO-253.


Asunto(s)
Agaricales , Flammulina , Antioxidantes/farmacología , Fibras de la Dieta , Bacterias , Antibacterianos/farmacología
2.
Curr Top Med Chem ; 23(25): 2394-2415, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37828679

RESUMEN

BACKGROUND: Piperine is a natural compound found in black pepper that has been traditionally used for various therapeutic purposes. In the ayurvedic system of medication there is a lot of evidence which shows that the piperine is widely used for different therapeutic purpose. In recent years, there has been an increasing interest in the pharmacological and therapeutic potential of piperine and its derivatives in modern medicine. In order to increase the bioavailability and therapeutic effectiveness of piperine and its analogs, researchers have been looking at various extraction methods and synthesis approaches. Many studies have been conducted in this area because of the promise of piperine as a natural substitute for synthetic medications. OBJECTIVES: The objective of this review article is to provide an up-to-date analysis of the literature on the synthesis of piperine analogs, including their extraction techniques and various biological activities such as antihypertensive, antidiabetic, insecticidal, antimicrobial, and antibiotic effects. Additionally, the review aims to discuss the potential of piperine in modern medicine, given its traditional use in various medicinal systems such as Ayurveda, Siddha, and Unani. The article also provides a comprehensive analysis of the plant from which piperine is derived. CONCLUSION: This review article provides a thorough examination of piperine and the source plant. The best extraction technique for the extraction of piperine and the synthesis of its analogs with various biological activities, including antihypertensive, antidiabetic, insecticidal, antibacterial, and antibiotic properties, are covered in the article. This review aims to provide an updated analysis of the literature on the synthesis of piperine analogs.


Asunto(s)
Alcaloides , Antihipertensivos , Alcaloides/farmacología , Alcamidas Poliinsaturadas/farmacología , Benzodioxoles/farmacología , Hipoglucemiantes , Antibacterianos
3.
Nutrients ; 15(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37513529

RESUMEN

Apitherapy (using bee products) has gained broad recognition in cancer therapeutics globally. Honeybee venom has a broad range of biological potential, and its utilization is rapidly emerging in apitherapy. Bee products have significant potential to strengthen the immune system and improve human health. Thus, this review is targeted toward recapitulating the chemo-preventive potential of melittin (MEL), which constitutes a substantial portion of honeybee venom. Honeybee venom (apitoxin) is produced in the venom gland of the honeybee abdomen, and adult bees utilize it as a primary colony defense mechanism. Apitoxin comprises numerous biologically active compounds, including peptides, enzymes, amines, amino acids, phospholipids, minerals, carbohydrates, and volatile components. We are mainly focused on exploring the potential of melittin (a peptide component) of bee venom that has shown promising potential in the treatment of several human cancers, including breast, stomach, lung, prostate, ovary, kidney, colon, gastric, esophageal, cervical cancers, melanoma, osteosarcoma, and hepatocellular carcinoma. This review has summarized all potential studies related to the anticancerous efficacy of melittin (apitoxin), its formulations, conjugates, and nano-formulations against several human carcinomas, which would further pave the way for future researchers in developing potent drugs for cancer management.


Asunto(s)
Venenos de Abeja , Neoplasias Óseas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Abejas , Animales , Venenos de Abeja/farmacología , Venenos de Abeja/uso terapéutico , Meliteno/farmacología , Meliteno/uso terapéutico , Péptidos
4.
J Proteins Proteom ; 13(4): 227-245, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36404953

RESUMEN

Cytochrome P450 46A1 (CYP46A1) is a crucial enzyme in brain that converts cholesterol to 24 (S) hydroxy cholesterol thereby increasing its polarity to facilitate removal of excess cholesterol from the CNS. The inhibition of CYP46A1 with several synthetic molecules has been investigated extensively for treatment of Alzheimer's disease, Huntington's disease, glaucoma, and in hippocampal neurons from aged mice. However, phytochemicals have received far little attention in studies involving development of potential CYP46A1 inhibitors. Thus, in the present study phytoconstituents from Indian traditional medicinal plants; Bacopa monnieri, Piper longum, and Withania somnifera, were virtually screened for interaction with CYP46A1 using computational tools. Out of three plants, six molecules from P. longum and three molecules from W. somnifera were shortlisted to study interactions with CYP46A1 based on the physio-chemical parameters. Fargesin, piperolactam A and coumaperine from P. longum showed the higher binding affinity and the values were - 10.3, - 9.5, - 9.0 kcal/moles respectively, whereas, withaferin A from W. somnifera had a binding affinity of - 12.9 kcal/mol. These were selected as potential modulators as they exhibited suitable interactions with active site residues; Tyr109, Leu112, Trp368, Gly369, and Ala474. The selected molecules were further subjected to molecular dynamics simulation. Further, the pharmacological properties of molecules were also predicted using ADMET calculator and the data revealed that all the selected compounds had good absorption as well as solubility characteristics. In addition, sesamin, fargesin, piperolactam A, and coumaperine had minimal or no toxic effects. Thus, the study successfully identified compounds from Indian medicinal plants that may serve as potential inhibitors of CYP46A1 or base structures to design novel CYP46A1 inhibitors, which may be effective in treating neurological conditions involving perturbed cholesterol homeostasis. Supplementary Information: The online version contains supplementary material available at 10.1007/s42485-022-00098-x.

5.
J Tradit Complement Med ; 12(5): 477-487, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36081821

RESUMEN

Background and aim: The ingredients viz., Artemisia roxburghiana, Cissampelos pareira, Stephania glabra, Drimia indica, Roylea cinerea, Tinospora sinensis and Curcuma longa of the present formulation are used to treat diabetes in the Indian traditional medical system. Adopting the concept of multiple herbal mixtures for better therapeutic effects from the ancient Ayurvedic text Sarangdhar Samhita, the present study aimed to develop a polyherbal formulation (PHF) of seven herbs and to evaluate its sodium-glucose cotransporter protein-2 (SGLT2) inhibitory effect on type 2 diabetic rats. Experimental procedure: Streptozotocin (STZ) (60 mg/kg) and nicotinamide (NAM) (120 mg/kg) were intraperitoneally administered to induce type 2 diabetes in Wistar rats. The animals were divided into 5 groups viz. normal control, diabetic control, positive control (dapagliflozin at 0.1 mg/kg) and two test groups (PHF at 250 and 500 mg/kg). Various parameters including blood glucose, serum glutamic pyruvic transaminase (SGPT), serum glutamic-oxaloacetic transaminase (SGOT), bilirubin, triglycerides and creatinine were measured. Results and conclusion: The treatment with PHF (250 and 500 mg/kg) showed a significant (p < 0.05) decrease in blood glucose levels by 56.37% and 58.17%, respectively. The levels of SGOT, SGPT and bilirubin were significantly reduced in PHF-fed diabetic rats. Histopathological examination revealed no major changes in the treated groups as compared to the normal control. The molecular docking study showed strong binding of ß-sitosterol, insulanoline, warifteine, dehydrocorydalmine, taraxerol acetate, lupeol, corydalmine and luteolin to SGLT2 protein. The present study concludes that PHF has promising antidiabetic activity via inhibiting SGLT2 protein without showing any adverse effects.

6.
ACS Appl Mater Interfaces ; 13(9): 10689-10704, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33621045

RESUMEN

There have been reports of different types of wound dressings for various functions and purposes. Cotton being one of the most widely used wound dressing material due to its non-toxic, biodegradable, and other properties is used for fabrication as well as in the form of scaffolds for faster and effective wound closure. Our research team has already demonstrated the role of silver nitroprusside nanoparticles (SNPNPs) for wound healing and antibacterial activity. In the current study, we have developed cotton fabric impregnated with SNPNPs (SNPCFs) which remain photo inert and displayed long-term antimicrobial activity due to the surface modification with the silver nitroprusside complex. These SNPCFs were characterized by various analytical techniques (XRD, FTIR, UV spectroscopy, TGA, TEM, FESEM, EDAX, ICP-OES). The fabricated cotton dressings with nanoparticles showed an improved water contact angle (113-130°) than that of bare cotton gauze (60°) and exhibited more antibacterial property in case of both Gram-negative bacteria (Klebsiella aerogenes and Escherichia coli) and Gram-positive bacteria (Pseudomonas aeruginosa and Bacillus subtilis) even after several washings. The biocompatible nature of SNPCFs was assessed by in vivo chorioallantoic membrane assay that showed no obstruction in the formation of blood vessels. The SNPCFs exhibited better wound healing activity compared to the bare cotton and AgCFs as observed in the C57BL6/J mouse. The histopathological investigation reveals increase in re-epithelialization and deposition of connective tissue. The macrophage (M2) counts in SNPCF-treated skin tissues were supportive of more wound healing activity than mice treated with cotton fabric impregnated with chemically synthesized silver nanoparticles. Based on biodistribution analysis using ICP-OES, the data illustrated that a significant amount of silver is absorbed in the skin tissues of mice as compared to the blood and kidney. Furthermore, the absence of silver from the vital organs (heart, liver, and kidney) corroborates our hypothesis that the SNPCFs can act excellently in treating wounds when topically applied over skin. Thereafter, all these results highlight a strong possibility that SNPCFs exemplify the potential as a new antimicrobial and wound healing agent in future times.


Asunto(s)
Antibacterianos/uso terapéutico , Vendajes , Nanopartículas del Metal/uso terapéutico , Nitroprusiato/uso terapéutico , Compuestos de Plata/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/farmacocinética , Bacterias/efectos de los fármacos , Fibra de Algodón , Femenino , Gossypium/química , Nanopartículas del Metal/química , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Nitroprusiato/química , Nitroprusiato/farmacocinética , Células RAW 264.7 , Compuestos de Plata/química , Compuestos de Plata/farmacocinética
7.
Eur J Med Chem ; 209: 112915, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139110

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia characterized by presence of extracellular amyloid plaques and intracellular neurofibrillary tangles composed of tau protein. Currently there are close to 50 million people living with dementia and this figure is expected to increase to 75 million by 2030 putting a huge burden on the economy due to the health care cost. Considering the effects on quality of life of patients and the increasing burden on the economy, there is an enormous need of new disease modifying therapies to tackle this disease. The current therapies are dominated by only symptomatic treatments including cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers but no disease modifying treatments exist so far. After several failed attempts to develop drugs against amyloidopathy, tau targeting approaches have been in the main focus of drug development against AD. After an overview of the tauopathy in AD, this review summarizes recent findings on the development of small molecules as therapeutics targeting tau modification, aggregation, and degradation, and tau-oriented multi-target directed ligands. Overall, this work aims to provide a comprehensive and critical overview of small molecules which are being explored as a lead candidate for discovering drugs against tauopathy in AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Fármacos Neuroprotectores/química , Proteínas tau/metabolismo , Animales , Benzodioxoles/farmacología , Inhibidores de la Colinesterasa/farmacología , Colinesterasas/metabolismo , Curcumina/farmacología , Humanos , Terapia Molecular Dirigida , Ovillos Neurofibrilares/metabolismo , Fármacos Neuroprotectores/farmacología , Fosforilación , Placa Amiloide/metabolismo , Agregación Patológica de Proteínas/prevención & control , Procesamiento Proteico-Postraduccional , Quinazolinas/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Tiadiazoles/farmacología
8.
Curr Mol Pharmacol ; 13(1): 7-16, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31333144

RESUMEN

BACKGROUND: Chlorogenic acid (CGA) is a quinic acid conjugate of caffeic acid. It is an ester formed between caffeic acid and the 3-hydroxyl of L-quinic acid. This polyphenol is naturally present in substantial amount in the green coffee beans. Minor quantities of CGA are also reported in apples, eggplant, blueberries, tomatoes, strawberries and potatoes. CGA is reported to be beneficial in hypertension, hyperglycemia, antimicrobial, antitumor, memory enhancer, weight management etc. Further, it is also reported to have anticancer, antioxidant and anti-inflammatory activities. Since the last decade, CGA drew public attention for its widely recommended use as a medicine or natural food additive supplement for the management of obesity. OBJECTIVE: The current review explores the medicinal promises of CGA and emphasizes on its antiobese property as reported by various scientific reports and publication. CONCLUSION: CGA shows promises as an antioxidant, glycemic control agent, anti-hypertensive, antiinflammatory, antimicrobial, neuro-protective and anti-obesity agent. It primarily activates the AMPactivated protein kinase, inhibits 3-hydroxy 3-methylglutaryl coenzyme-A reductase and strengthens the activity of carnitine palmitoyltransferase to control the obesity.


Asunto(s)
Fármacos Antiobesidad/uso terapéutico , Ácido Clorogénico/uso terapéutico , Obesidad/tratamiento farmacológico , Adenilato Quinasa/efectos de los fármacos , Animales , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Fármacos Antiobesidad/farmacología , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Carnitina O-Palmitoiltransferasa/efectos de los fármacos , Ácido Clorogénico/aislamiento & purificación , Ácido Clorogénico/farmacología , Café/química , Evaluación Preclínica de Medicamentos , Activación Enzimática/efectos de los fármacos , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hipolipemiantes/farmacología , Hipolipemiantes/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , PPAR alfa/agonistas
9.
Fitoterapia ; 102: 84-95, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25704369

RESUMEN

Quorum sensing in Pseudomonas aeruginosa plays an imperative role in virulence factor, biofilm formation and antimicrobial resistance. Blocking quorum sensing pathways are viewed as viable anti-virulent therapy in association with traditional antimicrobial therapy. Anti-quorum sensing dietary phytochemicals with may prove to be a safe and viable choice as anti-virulent drug candidates. Previously, our lab proved zingerone as potent anti-biofilm agent hence; further its anti-virulent and anti-quorum activities were evaluated. Zingerone, besides decreasing swimming, swarming and twitching phenotypes of P. aeruginosa PAO1, reduced biofilm forming capacity and production of virulence factors including rhamnolipid, elastase, protease, pyocyanin, cell free and cell bound hemolysin (p<0.001) indicating anti-virulent property attributing towards attenuation of virulence of P. aeruginosa. Further zingerone not only had marked effect on the production of quorum sensing signal molecules by clinical isolates of P. aeruginosa but also showed significant interference with the activation of QS reporter strains. To study the mechanism of blocking quorum sensing cascade, in silico analysis was carried out. Anti-QS activity was attributed to interference with the ligand receptor interaction of zingerone with QS receptors (TraR, LasR, RhlR and PqsR). Zingerone showed a good comparative docking score to respective autoinducer molecules which was even higher than that of vanillin, a proven anti-quorum sensing phytochemical. The results of the present study revealed the anti-quorum sensing activity of zingerone targeting ligand-receptor interaction, hence proposing zingerone as a suitable anti-virulent drug candidate against P. aeruginosa infections.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Guayacol/análogos & derivados , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Guayacol/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Pseudomonas aeruginosa/patogenicidad , Virulencia
10.
Pharmacogn Rev ; 7(14): 140-51, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24347922

RESUMEN

The genus Onosma L. (Boraginaceae) includes about 150 species distributed world-wide in which only about 75 plants has been described for its morphology and less than 10 plants for their chemical constituents and clinical potential. The phytochemical reports of this genus revels that it comprise mainly aliphatic ketones, lipids, naphthazarins, alkaloids, phenolic compounds, naphthoquinones, flavones while most important are shikonins and onosmins. The plants are traditionally used as laxative, anthelmintic and for alexipharmic effects. The plants are also equally use in eye, blood diseases, bronchitis, abdominal pain, stangury, thirst, itch, lecoderma, fever, wounds, burns, piles and urinary calculi. The flowers of various plants are prescribed as stimulants, cardiotonic, in body swelling while leaves are used as purgative and in cutaneous eruptions. The roots are used for coloring food stuffs, oils and dying wool and in medicinal preparations. This review emphasizes the distribution, morphology, phytochemical constituents, ethnopharmacology, which may help in future research.

11.
Expert Opin Drug Discov ; 8(8): 1013-27, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23662859

RESUMEN

INTRODUCTION: Benign prostatic hyperplasia (BPH) is a common medical problem in nearly 80% of geriatric male population severely affecting the quality of life. Several strategies has been suggested in the past for the management of BPH, but only α-blockers and 5α-reductase inhibitors are in clinical use. This review aims to give deep insight into advances in the design and discovery of newer chemical entities as 'druggable' molecule for the management of BPH. AREAS COVERED: In this review, the authors cover various classes of drugs that have shown their potential for management of BPH. These drugs include α-adrenergic antagonists, 5α-reductase inhibitors, phytochemical agents, phosphodiesterase inhibitor, luteinizing hormone releasing hormone antagonists and muscarinic receptor antagonists. Literature searches were carried out using Google Scholar, SciFinder and PubMed. EXPERT OPINION: The exact etiology of BPH is unknown; however, several mechanisms may be involved in the progression of the disease. Beside surgery and watchful waiting, medical therapies to treat BPH include α-adrenergic antagonist and 5α-reductase inhibitors. Phytotherapeutic agents are also used in some countries. Various other chemical classes of drugs are proposed for the treatment of the disease, but none of them have reached the clinic. Many classes of drugs are currently undergoing clinical trials such as phosphodiesterase inhibitors, luteinizing hormone releasing hormone antagonists and muscarinic receptor antagonists. The current need is to develop a potent, efficacious and highly selective drug for the treatment of BPH.


Asunto(s)
Hiperplasia Prostática/tratamiento farmacológico , Inhibidores de 5-alfa-Reductasa/farmacología , Inhibidores de 5-alfa-Reductasa/uso terapéutico , Antagonistas Adrenérgicos alfa/farmacología , Antagonistas Adrenérgicos alfa/uso terapéutico , Descubrimiento de Drogas , Hormona Liberadora de Gonadotropina/antagonistas & inhibidores , Humanos , Masculino , Antagonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/uso terapéutico , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Fitoterapia , Preparaciones de Plantas/farmacología , Preparaciones de Plantas/uso terapéutico , Hiperplasia Prostática/metabolismo
12.
Phytomedicine ; 19(7): 639-47, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22455995

RESUMEN

Therapies targeting central stress mechanisms are fundamental for the development of successful treatment strategies. Ocimum sanctum (OS) is an Indian medicinal plant traditionally used for the treatment of various stress-related conditions. Previously, we have isolated and characterized three OS compounds; Ocimarin, Ocimumoside A and Ocimumoside B. However, their role in modulating chronic stress-induced central changes is unexplored. Thus, in the present study the efficacy of these OS compounds have been evaluated on the chronic unpredictable stress (CUS)-induced alterations in the monoaminergic and antioxidant systems in the frontal cortex, striatum and hippocampus, along with the changes in the plasma corticosterone levels. CUS (two different types of stressors daily for seven days) resulted in a significant elevation of plasma corticosterone level, which was reversed to control levels by pretreatment with Ocimumoside A and B (40 mg/kg p.o.), while Ocimarin showed no effect. The levels of NA, DA and 5-HT were significantly decreased in all the three brain regions by CUS, with a selective increase of DA metabolites. A significant decrease in the glutathione (GSH) content, the activities of superoxide dismutase and catalase with a significant increase in the glutathione peroxidase activity and lipid peroxidation was observed in all the three regions of the brain by CUS. The OS compounds alone did not cause any significant change in the baseline values of these parameters. However, Ocimumoside A and B (40 mg/kg body p.o.) attenuated these CUS-induced alterations with an efficacy similar to that of standard anti-stress (Panax quinquefolium; 100 mg/kg p.o.) and antioxidant (Melatonin; 20 mg/kg i.p.) drugs. While, Ocimarin failed to modulate these CUS-induced alterations. Therefore, this is the first report which identified the anti-stress activity of novel Ocimumoside A and B at the level of central monoamines and antioxidant properties, implicating their therapeutic importance in the prevention of stress-related disorders.


Asunto(s)
Ansiolíticos/uso terapéutico , Encéfalo/efectos de los fármacos , Cerebrósidos/uso terapéutico , Corticosterona/sangre , Ocimum/química , Estrés Psicológico/tratamiento farmacológico , Animales , Ansiolíticos/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Monoaminas Biogénicas/metabolismo , Encéfalo/metabolismo , Cerebrósidos/farmacología , Modelos Animales de Enfermedad , Peroxidación de Lípido/efectos de los fármacos , Masculino , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/sangre , Estrés Psicológico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA