Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 171: 1-8, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28460330

RESUMEN

Due to the increased development of resistance of vectors against synthetic insecticides and chemical drugs, plant based insecticides serve as promising biocontrol agents for effective vector control. Green approach for the synthesis of nanoparticles has been attained using environmentally safe, non-toxic plant extracts. The present study was aimed to investigate the potent larvicidal activity of silver nanoparticles (AgNPs) produced by Derris trifoliata leaf extract in relation to the various concentrations of methanol and chloroform extracts for 24h against 3rd and 4th instar larvae of Aedes aegypti. AgNPs were synthesized using D. trifoliata leaf extract as reducing and stabilizing agent. Synthesized AgNPs were characterized by UV-Vis spectroscopy, FTIR spectroscopy, SEM, EDX, XRD and HRTEM. The size of AgNPs as estimated from the full width at half-maximum of (200) peak of silver was 16.13nm, the average crystalline size of the synthesized AgNPs was approximately 20nm, which was correlated with the HRTEM results (20nm). SEM and TEM images have shown the formation of polydispersed nanoparticles with an average size of 20nm. The FTIR spectra of AgNPs exhibited prominent peaks at 2360.7, 1606.2, 1095.6 and 785.9cm-1. The spectral peak observed at 1606.2, assigned to stretching vibration (C=O) in carbonyl compounds characterized by the presence of major constituents of flavonoids and terpenoids. The results obtained in FTIR spectroscopy correlated with the GC-MS analysis of methanol and chloroform extracts and indicates the presence of phytosteroids, flavonoids and terpenoids. The highest larvicidal activity was observed for the synthesized AgNPs against the 3rd instar larvae with LC50 values of 5.87mg/l and LC90 of 12.11mg/l, while against 4th instar larvae these values were7.00 and17.76mg/l respectively. The chloroform extracts also showed increased larvicidal activity than methanol extracts against 3rd instar larvae (LC50=54.42mg/l, LC90=140.83mg/l) and 4th instar larvae (LC50=62.47mg/l, LC90=145.06mg/l) of A. aegypti. Besides, the synthesized AgNPs also exhibited potent antibacterial activity against certain food borne pathogens. These results infer that the biologically synthesized AgNPs and organic solvent extracts have the potential to be used as an excellent eco-friendly approach for vector control against A. aegypti.


Asunto(s)
Aedes , Antibacterianos/química , Derris/química , Insecticidas , Nanopartículas del Metal/química , Extractos Vegetales/química , Plata/química , Animales , Antibacterianos/farmacología , Derris/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Tecnología Química Verde , Larva , Luz , Nanopartículas del Metal/toxicidad , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA