Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 9(11): e22051, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027691

RESUMEN

We evaluated the effects of select herbal extracts (Tinospora cordifolia [TC], Tinospora cordifolia with Piper longum [TC + PL], Withania somnifera [WS], Glycyrrhiza glabra [GG], AYUSH-64 [AY-64], and Saroglitazar [S]) on various parameters in a diet-induced obesity mouse model. After 12 weeks of oral administration of the herbal extracts in high-fat diet (HFD)-fed C57BL/6J mice, we analyzed plasma biochemical parameters, insulin resistance (IR), liver histology, and the expression of inflammatory and fibrosis markers, along with hepatic lipidome. We also used a 3D hepatic spheroid model to assess their impact on profibrotic gene expression. Among the extracts, TC + PL showed a significant reduction in IR, liver weight, TNF-α, IL4, IL10 expression, and hepatic lipid levels (saturated triglycerides, ceramides, lysophosphocholines, acylcarnitines, diglycerides, and phosphatidylinositol levels). Saroglitazar reversed changes in body weight, IR, plasma triglycerides, glucose, insulin, and various hepatic lipid species (fatty acids, phospholipids, glycerophospholipids, sphingolipids, and triglycerides). With the exception of GG, Saroglitazar, and other extracts protected against palmitic acid-induced fibrosis marker gene expression in the 3D spheroids. TC + PL and Saroglitazar also effectively prevented HFD-induced insulin resistance, inflammation, and specific harmful lipid species in the liver.

2.
Mol Omics ; 19(10): 787-799, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37534494

RESUMEN

The present study evaluated the therapeutic potential of the medicinal plant Lysimachia candida Lindl. against metabolic syndrome in male SD rats fed with a high-fat high-fructose (HFHF) diet. Methanolic extract of Lysimachia candida Lindl. (250 mg kg-1 body weight p.o.) was administrated to the HFHF-fed rats daily for 20 weeks. Blood samples were collected, and blood glucose levels and relevant biochemical parameters were analysed and used for the assessment of metabolic disease phenotypes. In this study, Lysimachia candida decreased HFHF diet-induced phenotypes of metabolic syndrome, i.e., obesity, blood glucose level, hepatic triglycerides, free fatty acids, and insulin resistance. Liquid chromatography-mass spectrometry-based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression in the presence and absence of the treatment. Furthermore, multivariate data analysis approaches have been employed to identify metabolites responsible for disease progression. Lysimachia candida Lindl. plant extract restored the metabolites that are involved in the biosynthesis and degradation of amino acids, fatty acid metabolism and vitamin metabolism. Interestingly, the results depicted that the treatment with the plant extract restored the levels of acetylated amino acids and their derivatives, which are involved in the regulation of beta cell function, glucose homeostasis, insulin secretion, and metabolic syndrome phenotypes. Furthermore, we observed restoration in the levels of indole derivatives and N-acetylgalactosamine with the treatment, which indicates a cross-talk between the gut microbiome and the metabolic syndrome. Therefore, the present study revealed the potential mechanism of Lysimachia candida Lindl. extract to prevent metabolic syndrome in rats.


Asunto(s)
Síndrome Metabólico , Ratas , Animales , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/prevención & control , Glucemia/análisis , Glucemia/metabolismo , Lysimachia , Fructosa , Ratas Sprague-Dawley , Dieta Alta en Grasa/efectos adversos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fenotipo , Aminoácidos/metabolismo , Progresión de la Enfermedad , Candida/metabolismo
3.
Front Pharmacol ; 13: 973768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313313

RESUMEN

Ayurvedic medicines Withania somnifera Dunal (ashwagandha) and AYUSH-64 have been used for the prevention and management of COVID-19 in India. The present study explores the effect of Ashwagandha and AYUSH-64 on important human CYP enzymes (CYP3A4, CYP2C8, and CYP2D6) to assess their interaction with remdesivir, a drug used for COVID-19 management during the second wave. The study also implies possible herb-drug interactions as ashwagandha and AYUSH-64 are being used for managing various pathological conditions. Aqueous extracts of ashwagandha and AYUSH-64 were characterized using LC-MS/MS. A total of 11 and 24 phytoconstituents were identified putatively from ashwagandha and AYUSH-64 extracts, respectively. In addition, in silico studies revealed good ADME properties of most of the phytoconstituents of these herbal drugs and suggested that some of these might possess CYP-450 inhibitory activity. In vitro CYP-450 studies with human liver microsomes showed moderate inhibition of CYP3A4, 2C8, and 2D6 by remdesivir, while ashwagandha had no inhibitory effect alone or in combination with remdesivir. AYUSH-64 also exhibited a similar trend; however, a moderate inhibitory effect on CYP2C8 was noticed. Thus, ashwagandha seems to be safe to co-administer with the substrates of CYP3A4, CYP2C8, and CYP2D6. However, caution is warranted in prescribing AYUSH-64 along with CYP2C8 substrate drugs. Furthermore, preclinical and clinical PK studies would be helpful for their effective and safer use in the management of various ailments along with other drugs.

4.
Front Pharmacol ; 12: 653872, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935766

RESUMEN

Fatty liver is one of the most common metabolic syndrome affecting the global population. Presently, limited treatment modalities with symptomatic approach are available for alleviating fatty liver. Traditional and herbal treatment modalities have shown evidence to improve the disease pathology. In the present research work, evaluation of a selected medicinal plant Lysimachia candida Lindl. was carried out to investigate its beneficial effects on fatty liver disease in rats. Male Sprague Dawley (SD) rats were fed with high-fat high-fructose diet to induce fatty liver phenotypes. After induction for 15 weeks, methanolic extract of Lysimachia candida Lindl. (250 mg/kg b. w. p. o.) was administrated to the rats daily for the next 17 weeks. Blood samples were collected at different time points to analyze fasting blood glucose levels and relevant biochemical parameters important for the assessment of metabolic disease phenotypes. Liquid chromatography-mass spectrometry (LC-MS) based metabolomics was done to study the dynamics of metabolic changes in the serum during disease progression and how the medicinally important plant extract treatment reversed the metabolic diseases. Multivariate data analysis approaches have been employed to understand the metabolome changes and disease pathology. This study has identified the interplay of some metabolic pathways that alter the disease progression and their reversal after administration of the plant extract. Different group of metabolites mainly bile acids, fatty acids, carnitines, and their derivatives were found to be altered in the diseased rats. However, all the metabolites identified between control and disease groups are mainly related to lipid metabolism. The results depict that the treatment with the above-mentioned plant extract improves the regulation of aberrant lipid metabolism, and reverses the metabolic syndrome phenotype. Therefore, the present study reveals the potential mechanism of the herbal extract to prevent metabolic syndrome in rats.

5.
BMC Pharmacol Toxicol ; 21(1): 78, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203457

RESUMEN

BACKGROUND: Plants provide a ray of hope to combat the ever increasing antibiotic resistance and Symplocos racemosa is a valuable medicinal plant. The study focused on highlighting the importance of this plant's phytoconstituents as potential source of novel antimicrobials against planktonic as well as biofilm forming microorganisms, along with their antiproliferative activity. The biosafety of the phytoconstituents was also established, followed by detection of probable antimicrobial components. METHODS: The best organic extractant and major groups of phytoconstituents were tested for their antimicrobial activity against reference microbial strains and drug-resistant clinical isolates. The anti-proliferative potential of the most active group of phytoconstituents was evaluated against cancerous cell lines. The in vitro biosafety of phytoconstituents was evaluated by Ames and MTT assay, while in vivo biosafety of the most active phytoconstituents, i.e., flavonoids was determined by acute oral toxicity. Further, the probable antimicrobial components in the flavonoids were detected by TLC and GC-MS. RESULTS: Ethyl acetate extract was the most effective among various organic extracts, whereas phytoconstituents such as flavonoids, cardiac glycosides, saponins, tannins, triterpenes and phytosterols were the major groups present, with flavonoids being the most potent antimicrobials. The phytoconstituents displayed a significant antibiofilm potential, as exhibited by inhibition of initial cell attachment, disruption of the pre-formed biofilms and reduced metabolic activity of biofilms. The phytoconstituents were significantly active against the drug-resistant strains of E.coli, MRSA and Salmonella spp. Further, flavonoids showed significant cytotoxic effect against the cancerous cell lines but were non-cytotoxic against Vero (normal) cell line. All the test preparations were biosafe, as depicted by the Ames test and MTT assay. Also, flavonoids did not induce any abnormality in body weight, clinical signs, biochemical parameters and organs' histopathology of the Swiss albino mice during in vivo acute oral toxicity studies. The flavonoids were resolved into 4 bands (S1-S4), where S3 was the most active and its GC-MS analysis revealed the presence of a number of compounds, where Bicyclo [2.2.1]heptan-2-one,1,7,7-trimethyl-, (1S)- was the most abundant. CONCLUSIONS: These findings suggest that the phytoconstituents from Symplocos racemosa bark could act as potential source of antimicrobial as well as antiproliferative metabolites.


Asunto(s)
Antiinfecciosos/farmacología , Bioprospección/métodos , Proliferación Celular/efectos de los fármacos , Contención de Riesgos Biológicos/métodos , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Animales , Antiinfecciosos/aislamiento & purificación , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Línea Celular , Proliferación Celular/fisiología , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Masculino , Ratones , Pruebas de Sensibilidad Microbiana/métodos , Fitoquímicos/aislamiento & purificación , Corteza de la Planta , Extractos Vegetales/aislamiento & purificación
6.
Oxid Med Cell Longev ; 2020: 7856318, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32617142

RESUMEN

Allylmethylsulfide (AMS) is a novel sulfur metabolite found in the garlic-fed serum of humans and animals. In the present study, we have observed that AMS is safe on chronic administration and has a potential antihypertrophic effect. Chronic administration of AMS for 30 days did not cause any significant differences in the body weight, electrocardiogram, food intake, serum biochemical parameters, and histopathology of vital organs. Single-dose pharmacokinetics of AMS suggests that AMS is rapidly metabolized into Allylmethylsulfoxide (AMSO) and Allylmethylsulfone (AMSO2). To evaluate the efficacy of AMS, cardiac hypertrophy was induced by subcutaneous implantation of ALZET® osmotic minipump containing isoproterenol (~5 mg/kg/day), cotreated with AMS (25 and 50 mg/kg/day) and enalapril (10 mg/kg/day) for 2 weeks. AMS and enalapril significantly reduced cardiac hypertrophy as studied by the heart weight to body weight ratio and mRNA expression of fetal genes (ANP and ß-MHC). We have observed that TBARS, a parameter of lipid peroxidation, was reduced and the antioxidant enzymes (glutathione, catalase, and superoxide dismutase) were improved in the AMS and enalapril-cotreated hypertrophic hearts. The extracellular matrix (ECM) components such as matrix metalloproteinases (MMP2 and MMP9) were significantly upregulated in the diseased hearts; however, with the AMS and enalapril, it was preserved. Similarly, caspases 3, 7, and 9 were upregulated in hypertrophic hearts, and with the AMS and enalapril treatment, they were reduced. Further to corroborate this finding with in vitro data, we have checked the nuclear expression of caspase 3/7 in the H9c2 cells treated with isoproterenol and observed that AMS cotreatment reduced it significantly. Histopathological investigation of myocardium suggests AMS and enalapril treatment reduced fibrosis in hypertrophied hearts. Based on our experimental results, we conclude that AMS, an active metabolite of garlic, could reduce isoproterenol-induced cardiac hypertrophy by reducing oxidative stress, apoptosis, and stabilizing ECM components.


Asunto(s)
Compuestos Alílicos/uso terapéutico , Cardiomegalia/tratamiento farmacológico , Ajo/química , Sulfuros/uso terapéutico , Compuestos Alílicos/administración & dosificación , Compuestos Alílicos/metabolismo , Compuestos Alílicos/farmacología , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Biomarcadores/sangre , Peso Corporal/efectos de los fármacos , Cardiomegalia/sangre , Cardiomegalia/patología , Caspasas/metabolismo , Línea Celular , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Fibrosis , Isoproterenol , Peroxidación de Lípido/efectos de los fármacos , Masculino , Metaloproteinasas de la Matriz/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Tamaño de los Órganos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Sulfuros/administración & dosificación , Sulfuros/metabolismo , Sulfuros/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA