Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioresour Technol ; 384: 129325, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315627

RESUMEN

The objective of this research was to elucidate the effect of varying proportions of magnesite (MS) addition - 0% (T1), 2.5% (T2), 5% (T3), 7.5% (T4), and 10% (T5) - on nitrogen transformation and bacterial community dynamics during pig manure composting. In comparison to T1 (control), MS treatments amplified the abundance of Firmicutes, Actinobacteriota, and Halanaerobiaeota, bolstered the metabolic functionality of associated microorganisms, and enhanced the nitrogenous substance metabolic pathway. A complementary effect in core bacillus species played a key role in nitrogen preservation. Compared to T1, 10% MS demonstrated the most substantial influence on composting because Total Kjeldahl Nitrogen increased by 58.31% and NH3 emission decreased by 41.52%. In conclusion, 10% MS appears to be optimal for pig manure composting, as it can augment microbial abundance and mitigate nitrogen loss. This study offers a more ecologically sound and economically viable method for curtailing nitrogen loss during composting.


Asunto(s)
Compostaje , Nitrógeno , Animales , Porcinos , Estiércol , Suelo , Bacterias
2.
Environ Sci Pollut Res Int ; 30(4): 8977-8986, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35507222

RESUMEN

The use of jackfruit peel as a source for natural and fully biodegradable "nanocellulose" (NC) for the production of bioplastics with Azadirachta indica (A. indica) extracts and polyethylene glycol (PEG) for the antibacterial properties is investigated. The characterization of the biocomposite using FT-IR and WXRD was reported. The physicochemical properties including thickness, moisture content, water holding capacity, swelling, porosity, and biodegradability in soil were investigated. The incorporation of A. indica extract revealed an increased shelf life due to the strong antibacterial activity, and these biocomposites were degraded in soil within 60 days after the end use without any harm to the environment. Jackfruit-derived nanocellulose film blended with A. indica extract exhibited strong antibacterial activity against gram-positive and gram-negative food spoilage bacteria. Disc diffusion assay, live/dead assay, and CFU analysis confirmed the antibacterial property of the synthesized film. Moreover, the films clearly prevented the biofilm formation in bacteria. Thus, the developed bioplastics can be utilized as appropriate substitutes to food packaging materials and also for biomedical applications such as wound dressings.


Asunto(s)
Artocarpus , Azadirachta , Productos Biológicos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Bacterias Gramnegativas , Azadirachta/química
3.
Bioresour Technol ; 362: 127833, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36029981

RESUMEN

Current experimental evidence has revealed that pomegranate peel is a significant source of essential bio compounds, and many of them can be transformed into valorized products. Pomegranate peel can also be used as feedstock to produce fuels and biochemicals. We herein review this pomegranate peel conversion technology and the prospective valorized product that can be synthesized from this frequently disposed fruit waste. The review also discusses its usage as a carbon substrate to synthesize bioactive compounds like phenolics, flavonoids and its use in enzyme biosynthesis. Based on reported experimental evidence, it is apparent that pomegranate peel has a large number of applications, and therefore, the development of an integrated biorefinery concept to use pomegranate peel will aid in effectively utilizing its significant advantages. The biorefinery method displays a promising approach for efficiently using pomegranate peel; nevertheless, further studies should be needed in this area.


Asunto(s)
Lythraceae , Granada (Fruta) , Antioxidantes/análisis , Frutas/química , Lythraceae/química , Extractos Vegetales/química , Estudios Prospectivos
4.
Bioresour Technol ; 360: 127541, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35777646

RESUMEN

The effects of magnesite (MS) on fungi communities and the core fungi complementarity during pig manure (PM) composting were explored. Different dosage of MS [0% (T1), 2.5% (T2), 5% (T3), 7.5% (T4) and 10% (T5)] as amendments mixed with PM for 42 days composting. The results showed the dominant of phyla were Ascomycota (78.87%), Neocallimastigomycota (41.40%), Basidiomycota (30.81%) and Aphelidiomycota (29.44%). From day 7 to 42, the abundance of Ascomycota and Aphelidiomycota were increased from 7.75% to 42.41% to 57.27%-78.87% and 0-0.70% to 11.73%-29.44% among all treatments. Nevertheless, the phyla abundance of Neocallimastigomycota and Basidiomycota decreased from day 7 to 42. The co-occurrence network indicated that the high additive amendment could enhance the core fungi complementarity effects capacity. The 10% MS addition was a promisable candidate to optimum fungal communities, and causing a better compost quality. This study illustrated the potential and fungi communities changing of MS as additives in composting.


Asunto(s)
Ascomicetos , Basidiomycota , Compostaje , Micobioma , Animales , Magnesio , Estiércol/microbiología , Suelo , Porcinos
5.
Bioresour Technol ; 347: 126668, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34998925

RESUMEN

Microalgae technology is a promising method for treating piggery digestate, while its removal ability of humic acids (HAs) is poor. Here, an electric field-microalgae system (EFMS) was used to improve the removal of HAs from the piggery digestate. Results indicated that the removal of HAs by EFMS relied on the initial concentration of HAs, electrical intensity, the initial inoculation concentration of microalgae and pH. Values of these parameters were optimized as electrical intensity of 1.2 V/cm, microalgae initial inoculation concentration of 0.1 g/L and pH 5.0. The HAs removal efficiency by EFMS (55.38%) was 13% and 38% higher than that by single electric field and microalgal technology. It was observed that oxidation, coagulation and assimilation contributed to the removal of HAs, suggesting that EFMS could serve as an attractive and cost-effective technique for the removal of HAs from the piggery digestate.


Asunto(s)
Microalgas , Biomasa , Sustancias Húmicas , Nitrógeno , Fósforo , Aguas Residuales/análisis
6.
Bioresour Technol ; 346: 126409, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34838972

RESUMEN

Spent tea leaves (STL) are generated after the extraction of liquor from processed tea leaves and are regarded as an underutilized waste. STL are rich in essential amino acids, ω-6 and ω-3 fatty acids, alkaloids (theobromine and caffeine), polyphenols (catechin, theaflavins and rutin) and minerals (Ca, P, K, Mg, Mn) that could be utilized for the production of industrially important products. Vermicomposting, anaerobic digestion, silage preparation and fermentation are currently used as low cost methods for the bioconversion of STL to a usable form. Structural, morphological and chemical modification of STL after suitable bioconversion enables its application in the development of biopolymers, biofuels, catechin derivatives, biochar, absorbents for dye, and for removal of Cd, Hg, Cr(IV), As(V) and aspirin. This review discusses the composition, characterization, bioconversion and value added product generation from STL while highlighting prospective applications of STL in developing battery electrodes, nanocatalysts, insulation materials and edible bioactive peptides.


Asunto(s)
Hojas de la Planta , , Biocombustibles , Fermentación , Polifenoles
7.
Bioresour Technol ; 346: 126590, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34953996

RESUMEN

Lignocellulosic wastes have the ability to be transformed into oligosaccharides and other value-added products. The synthesis of oligosaccharides from renewable sources bestow to growing bioeconomies. Oligosaccharides are synthesized chemically or biologically from agricultural residues. These oligosaccharides are functional food supplements that have a positive impact on humans and livestock. Non-digestible oligosaccharides, refered as prebiotics are beneficial for the colonic microbiota inhabiting the f the digestive system. These microbiota plays a crucial role in stimulating the host immune system and other physiological responses. The commonly known prebiotics, galactooligosaccharides (GOS), xylooligosaccharides (XOS), fructooligosaccharides (FOS), mannanooligosaccharides (MOS), and isomaltooligosaccharides (IOS) are synthesized either through enzymatic or whole cell-mediated approaches using natural or agricultural waste substrates. This review focusses on recent advancements in biological processes, for the synthesis of oligosaccharides using renewable resources (lignocellulosic substrates) for sustainable circular bioeconomy. The work also addresses the limitations associated with the processes and commercialization of the products.


Asunto(s)
Microbiota , Oligosacáridos , Suplementos Dietéticos , Humanos , Prebióticos
8.
Bioresour Technol ; 338: 125530, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34271498

RESUMEN

Along with the increasing consumption of tea and its extracts, the amount of tea waste grows rapidly, which not only results in huge biomass loss, but also increases environmental stress. In past years, interest has been attracted on utilization of tea waste biomass, and a lot of work has been carried out. This review summarized the progress in conversion of tea waste by thermo-chemical and biological technologies and analyzed the property of the derived products and their performance in applications. It was found that biochar derived from tea waste had relatively large surface area, porous structures, and abundant functional groups, and could be used as bio-adsorbents and catalysts and electrochemical energy storage, while the cost of its largescale production should be evaluated. Profoundly, biological conversion, including ensiling and composting, was suggested to be an effective way to develop the tea waste biomass in practice due to its low-cost and specific functions.


Asunto(s)
Compostaje , Biomasa ,
9.
Bioresour Technol ; 331: 125054, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33832828

RESUMEN

Recently, much research has been carried out to find a suitable catalyst for the transesterification process during biodiesel production where heterogeneous catalysts play a crucial role. As homogenous catalysts present drawbacks such as slow reaction rate, high-cost due to the use of food grade oils, problems associated with separation process, and environmental pollution, heterogenous catalysts are more preferred. Animal shells and bones are the biowastes suitably calcined for the synthesis of heterogenous base catalyst. The catalysts synthesized using organic wastes are environmentally friendly, and cost-effective. The present review is dedicated to synthesis of heterogeneous basic catalysts from the natural resources or biowastes in biodiesel production through transesterification of oils. Use of calcined catalysts for converting potential feedstocks (vegetable oils and animal fat) into biodiesel/FAME is effective and safe, and the yield could be improved over 98%. There is a vast scope for biowaste-derived catalysts in green production of biofuel.


Asunto(s)
Biocombustibles , Aceites de Plantas , Animales , Catálisis , Esterificación
10.
Bioengineered ; 11(1): 1001-1015, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32881650

RESUMEN

Endophytic fungi and bacteria are the most ubiquitous and representative commensal members that have been studied so far in various higher plants. Within colonization and interaction with their host plants, endophytic microbiota are reportedly to modulate not only the host's growth but also holobiont resilience to abiotic and biotic stresses, providing a natural reservoir and a promising solution for sustainable agricultural development challenged by global climate change. Moreover, possessing the talent to produce a wide array of high-value natural products, plant endophytic microbiota also serve as an alternative way for novel drug discovery. In this review, tea, one of the world's three largest nonalcoholic beverages and a worldwide economic woody crop, was highlighted in the context of endophytic microbiota. We explore the recent studies regarding isolation approaches, distribution characteristics and diversity, and also biological functions of endophytic microbiota in Camellia sinensis (L.) O. Kuntze. Profoundly, the future insight into interaction mechanism between endophytic microbiota and tea plants will shed light on in-depth exploration of tea microbial resources.


Asunto(s)
Camellia sinensis/microbiología , Camellia sinensis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Microbiota
11.
Bioresour Technol ; 297: 122435, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31780244

RESUMEN

This research investigated the influence of biochar (B) and bean dregs (BD) amendments on carbon and nitrogen losses through greenhouse gas (GHG) emissions during pig manure (PM) composting. The treatments included 15% BD, 10% B and 15% BD+10% B (w/w dry basis of PM) amendments in the compost, whereas the CK (control) lacked any additives. The NH4+-N, C/N and germination index (GI) of the end products ensured compost maturity. Compared with the CK, the 15% BD amendment increased the total nitrogen content (TKN) of the final product by 8.05% but also increased NH3 (54.98%) and GHG emissions (40.35%) as well as nitrogen loss (25.62%). Furthermore, the combined treatment of 15% BD+10% B improved the TKN (2.83%) of the end product and controlled NH3 emissions (33.71%), GHG emissions (29.56%) and nitrogen loss (24.26%) while increasing CO2 only with the 15% BD amendment. Therefore, the combination of BD+B was recommended.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Animales , Suplementos Dietéticos , Estiércol , Nitrógeno , Suelo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA