Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oncotarget ; 7(45): 73292-73308, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27689335

RESUMEN

The moderate anticancer effect of arginine deprivation in clinical trials has been linked to an induced argininosuccinate synthetase (ASS1) expression in initially ASS1-negative tumors, and ASS1-positive cancers are anticipated as non-responders. Our previous studies indicated that arginine deprivation and low doses of the natural arginine analog canavanine can enhance radioresponse. However, the efficacy of the proposed combination in the presence of extracellular citrulline, the substrate for arginine synthesis by ASS1, remains to be elucidated, in particular for malignant cells with positive and/or inducible ASS1 as in colorectal cancer (CRC). Here, the physiological citrulline concentration of 0.05 mM was insufficient to overcome cell cycle arrest and radiosensitization triggered by arginine deficiency. Hyperphysiological citrulline (0.4 mM) did not entirely compensate for the absence of arginine and significantly decelerated cell cycling. Similar levels of canavanine-induced apoptosis were detected in the absence of arginine regardless of citrulline supplementation both in 2-D and advanced 3-D assays, while normal colon epithelial cells in organoid/colonosphere culture were unaffected. Notably, canavanine tremendously enhanced radiosensitivity of arginine-starved 3-D CRC spheroids even in the presence of hyperphysiological citrulline. We conclude that the novel combinatorial targeting strategy of metabolic-chemo-radiotherapy has great potential for the treatment of malignancies with inducible ASS1 expression.


Asunto(s)
Arginina/metabolismo , Canavanina/administración & dosificación , Citrulina/metabolismo , Radiación Ionizante , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Argininosuccinato Sintasa/genética , Argininosuccinato Sintasa/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Metilación de ADN/efectos de los fármacos , Metilación de ADN/efectos de la radiación , Expresión Génica , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de la radiación , Tolerancia a Radiación , Esferoides Celulares , Células Tumorales Cultivadas
2.
J Biotechnol ; 148(1): 3-15, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20097238

RESUMEN

The present article highlights the rationale, potential and flexibility of tumor spheroid mono- and cocultures for implementation into state of the art anti-cancer therapy test platforms. Unlike classical monolayer-based models, spheroids strikingly mirror the 3D cellular context and therapeutically relevant pathophysiological gradients of in vivo tumors. Some concepts for standardization and automation of spheroid culturing, monitoring and analysis are discussed, and the challenges to define the most convenient analytical endpoints for therapy testing are outlined. The potential of spheroids to contribute to either the elimination of poor drug candidates at the pre-animal and pre-clinical state or the identification of promising drugs that would fail in classical 2D cell assays is emphasised. Microtechnologies, in the form of micropatterning and microfluidics, are also discussed and offer the exciting prospect of standardized spheroid mass production to tackle high-throughput screening applications within the context of traditional laboratory settings. The extension towards more sophisticated spheroid coculture models which more closely reflect heterologous tumor tissues composed of tumor and various stromal cell types is also covered. Examples are given with particular emphasis on tumor-immune cell cocultures and their usefulness for testing novel immunotherapeutic treatment strategies. Finally, tumor cell heterogeneity and the extraordinary possibilities of putative cancer stem/tumor-initiating cell populations that can be maintained and expanded in sphere-forming assays are introduced. The relevance of the cancer stem cell hypothesis for cancer cure is highlighted, with the respective sphere cultures being envisioned as an integral tool for next generation drug development offensives.


Asunto(s)
Técnicas de Cocultivo , Técnicas Analíticas Microfluídicas , Esferoides Celulares , Células Tumorales Cultivadas , Animales , Técnicas de Cocultivo/instrumentación , Técnicas de Cocultivo/métodos , Técnicas de Cocultivo/tendencias , Evaluación Preclínica de Medicamentos/instrumentación , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/tendencias , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Ratones , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
3.
J Biomol Screen ; 9(4): 273-85, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15191644

RESUMEN

Over the past few years, establishment and adaptation of cell-based assays for drug development and testing has become an important topic in high-throughput screening (HTS). Most new assays are designed to rapidly detect specific cellular effects reflecting action at various targets. However, although more complex than cell-free biochemical test systems, HTS assays using monolayer or suspension cultures still reflect a highly artificial cellular environment and may thus have limited predictive value for the clinical efficacy of a compound. Today's strategies for drug discovery and development, be they hypothesis free or mechanism based, require facile, HTS-amenable test systems that mimic the human tissue environment with increasing accuracy in order to optimize preclinical and preanimal selection of the most active molecules from a large pool of potential effectors, for example, against solid tumors. Indeed, it is recognized that 3-dimensional cell culture systems better reflect the in vivo behavior of most cell types. However, these 3-D test systems have not yet been incorporated into mainstream drug development operations. This article addresses the relevance and potential of 3-D in vitro systems for drug development, with a focus on screening for novel antitumor drugs. Examples of 3-D cell models used in cancer research are given, and the advantages and limitations of these systems of intermediate complexity are discussed in comparison with both 2-D culture and in vivo models. The most commonly used 3-D cell culture systems, multicellular spheroids, are emphasized due to their advantages and potential for rapid development as HTS systems. Thus, multicellular tumor spheroids are an ideal basis for the next step in creating HTS assays, which are predictive of in vivo antitumor efficacy.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Esferoides Celulares/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Técnicas In Vitro , Modelos Biológicos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA