Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 39(11): 319, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37743395

RESUMEN

Tuberose flowers (Calcutta Single variety) valued as ornamentals globally, have short shelf-lives of 8 days at 4 ± 1 °C and are therefore discarded post senescence. Previous investigations from our laboratory have established that a combination treatment using GRAS preservatives [(sucrose (4%) and CaCl2 (0.02%)]-cum-gamma-irradiation (0.02 kGy) could extend its shelf-life to 24 days, when stored at 4 ± 1 °C with concomitant enhancement in the content of its bioactive principle, viz. methyl eugenol. Supercritical carbon dioxide (SC-CO2) extract of the tuberose flower wastes post combination treatment therefore had a higher methyl eugenol content (4.11 ± 0.05 µg/g), vis-à-vis its non-treated counterpart (2.03 ± 0.03 µg/g), and thus significantly higher antioxidant and antimicrobial potencies (MIC values of 1.83 ± 0.02 mg/ml and 1.98 ± 0.03 mg/ml against S. aureus ATCC 25923 strain and MDR strain, respectively). The microencapsulated powder of the extract (MEp) obtained by spray drying was applied for healing of epidermal wounds created on New Zealand white rabbits, post skin irritancy test (wherein no clinical sign of toxicity, redness or swelling was observed). When MEp was applied, accelerated healing occurred which commenced on day 2 and was completed by day 6 vis-à-vis that of the control powder set (without extract) which showed no signs of wound healing. Therefore, the sensorially compromised-senesced tuberose flowers, a rich source of methyl eugenol, has been successfully valorized through utilization of the same in developing a novel topical antibiotic powder against potent skin pathogens.


Asunto(s)
Agave , Dióxido de Carbono , Animales , Conejos , Polvos , Staphylococcus aureus , India , Flores , Extractos Vegetales/farmacología
2.
AAPS PharmSciTech ; 18(2): 349-357, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26961969

RESUMEN

The objective was to improve the dissolution of valsartan by developing valsartan nanocrystals and design a pulsed release system for the chronotherapy of hypertension. Valsartan nanocrystals were prepared by sonication-anti-solvent precipitation method and lyophilized to obtain dry powder. Nanocrystals were directly compressed to minitablets and coated to achieve pulsatile valsartan release. Pharmacokinetic profiles of optimized and commercial formulations were compared in rabbit model. The mean particle size and PDI of the optimized nanocrystal batch V4 was reported as 211 nm and 0.117, respectively. DSC and PXRD analysis confirmed the crystalline nature of valsartan in nanocrystals. The dissolution extent of valsartan was markedly enhanced with both nanocrystals and minitablets as compared to pure valsartan irrespective of pH of the medium. Core minitablet V4F containing 5% w/w polyplasdone XL showed quickest release of valsartan, over 90% within 15 min. Coated formulation CV4F showed two spikes in release profile after successive lag times of 235 and 390 min. The pharmacokinetic study revealed that the bioavailability of optimized formulation (72.90%) was significantly higher than the commercial Diovan tablet (30.18%). The accelerated stability studies showed no significant changes in physicochemical properties, release behavior, and bioavialability of CV4F formulation. The formulation was successfully designed to achieve enhanced bioavailability and dual pulsatile release. Bedtime dosing will more efficiently control the circadian spikes of hypertension in the morning.


Asunto(s)
Nanopartículas/química , Valsartán/química , Animales , Disponibilidad Biológica , Química Farmacéutica/métodos , Portadores de Fármacos/química , Masculino , Nanopartículas/metabolismo , Tamaño de la Partícula , Polvos/química , Polvos/metabolismo , Conejos , Solubilidad , Comprimidos/química , Comprimidos/metabolismo , Valsartán/metabolismo
3.
J Control Release ; 147(3): 314-25, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20691738

RESUMEN

With the advancement in the field of chronobiology, modern drug delivery approaches have been elevated to a new concept of chronopharmacology i.e. the ability to deliver the therapeutic agent to a patient in a staggered profile. However the major drawback in the development of such delivery system that matches the circadian rhythm requires the availability of precise technology (pulsatile drug delivery). The increasing research interest surrounding this delivery system has widened the areas of pharmaceutics in particular with many more sub-disciplines expected to coexist in the near future. This review on chronopharmaceutics gives a comprehensive emphasis on potential disease targets, revisits the existing technologies in hand and also addresses the theoretical approaches to emerging discipline such as genetic engineering and target based specific molecules. With the biological prospective approaches in delivering drugs it is well understood that safer and more realistic approaches in the therapy of diseases will be achieved in the days to come.


Asunto(s)
Cronoterapia de Medicamentos , Sistemas de Liberación de Medicamentos , Tecnología Farmacéutica/métodos , Animales , Química Farmacéutica , Formas de Dosificación , Portadores de Fármacos , Composición de Medicamentos , Humanos , Cinética , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA