Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 2791: 57-70, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532092

RESUMEN

Immunohistochemistry is a method that allows the detection of individual components of cell walls in an extremely precise way at the level of a single cell and wall domains. The cell wall antibodies detect specific epitopes of pectins, arabinogalactan proteins (AGP), hemicelluloses, and extensins. The presented method visualization of the selected pectic and AGP epitopes using antibodies directed to wall components is described. The method of the analysis of the chemical composition of the wall is present on the example of the shoot apical meristems of Fagopurum esculentum and Fagopyrum tataricum. Recommended protocols for immunostaining and examination on fluorescence microscopy level are presented.


Asunto(s)
Fagopyrum , Fagopyrum/química , Fagopyrum/metabolismo , Meristema/metabolismo , Pectinas/análisis , Inmunohistoquímica , Epítopos , Pared Celular/química
2.
Cells ; 10(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34440734

RESUMEN

The increased use of nanoparticles (NP) in different industries inevitably results in their release into the environment. In such conditions, plants come into direct contact with NP. Knowledge about the uptake of NP by plants and their effect on different developmental processes is still insufficient. Our studies concerned analyses of the changes in the chemical components of the cell walls of Hordeum vulgare L. roots that were grown in the presence of gold nanoparticles (AuNP). The analyses were performed using the immunohistological method and fluorescence microscopy. The obtained results indicate that AuNP with different surface charges affects the presence and distribution of selected pectic and arabinogalactan protein (AGP) epitopes in the walls of root cells.


Asunto(s)
Pared Celular/química , Oro/química , Hordeum/metabolismo , Nanopartículas del Metal/química , Hordeum/química , Hordeum/crecimiento & desarrollo , Mucoproteínas/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Estrés Fisiológico
3.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143222

RESUMEN

Changes in the composition of the cell walls are postulated to accompany changes in the cell's fate. We check whether there is a relationship between the presence of selected pectic, arabinogalactan proteins (AGPs), and extensins epitopes and changes in cell reprogramming in order to answer the question of whether they can be markers accompanying changes of cell fate. Selected antibodies were used for spatio-temporal immunolocalization of wall components during the induction of somatic embryogenesis. Based on the obtained results, it can be concluded that (1) the LM6 (pectic), LM2 (AGPs) epitopes are positive markers, but the LM5, LM19 (pectic), JIM8, JIM13 (AGPs) epitopes are negative markers of cells reprogramming to the meristematic/pluripotent state; (2) the LM8 (pectic), JIM8, JIM13, LM2 (AGPs) and JIM11 (extensin) epitopes are positive markers, but LM6 (pectic) epitope is negative marker of cells undergoing detachment; (3) JIM4 (AGPs) is a positive marker, but LM5 (pectic), JIM8, JIM13, LM2 (AGPs) are negative markers for pericycle cells on the xylem pole; (4) LM19, LM20 (pectic), JIM13, LM2 (AGPs) are constitutive wall components, but LM6, LM8 (pectic), JIM4, JIM8, JIM16 (AGPs), JIM11, JIM12 and JIM20 (extensins) are not constitutive wall components; (5) the extensins do not contribute to the cell reprogramming.


Asunto(s)
Biomarcadores/análisis , Pared Celular/química , Reprogramación Celular , Daucus carota/fisiología , Hipocótilo/fisiología , Mucoproteínas/metabolismo , Técnicas de Embriogénesis Somática de Plantas , Daucus carota/citología , Epítopos/inmunología , Hipocótilo/citología , Mucoproteínas/inmunología , Pectinas/química , Pectinas/metabolismo , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo
4.
Plant Cell Rep ; 39(6): 779-798, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32232559

RESUMEN

KEY MESSAGE: Differences in the composition and the structural organisation of the extracellular matrix correlate with the morphogenic competence of the callus tissue that originated from the isolated endosperm of kiwifruit. The chemical composition and structural organisation of the extracellular matrix, including the cell wall and the layer on its surface, may correspond with the morphogenic competence of a tissue. In the presented study, this relationship was found in the callus tissue that had been differentiated from the isolated endosperm of the kiwiberry, Actinidia arguta. The experimental system was based on callus samples of exactly the same age that had originated from an isolated endosperm but were cultured under controlled conditions promoting either an organogenic or a non-organogenic pathway. The analyses which were performed using bright field, fluorescence and scanning electron microscopy techniques showed significant differences between the two types of calli. The organogenic tissue was compact and the outer walls of the peripheral cells were covered with granular structures. The non-organogenic tissue was composed of loosely attached cells, which were connected via a net-like structure. The extracellular matrices from both the non- and organogenic tissues were abundant in pectic homogalacturonan and extensins (LM19, LM20, JIM11, JIM12 and JIM20 epitopes), but the epitopes that are characteristic for rhamnogalacturonan I (LM5 and LM6), hemicellulose (LM25) and the arabinogalactan protein (LM2) were detected only in the non-organogenic callus. Moreover, we report the epitopes, which presence is characteristic for the Actinidia endosperm (LM21 and LM25, heteromannan and xyloglucan) and for the endosperm-derived cells that undergo dedifferentiation (loss of LM21 and LM25; appearance or increase in the content of LM5, LM6, LM19, JIM11, JIM12, JIM20, JIM8 and JIM16 epitopes).


Asunto(s)
Actinidia/citología , Actinidia/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Anticuerpos Monoclonales , Callo Óseo/citología , Pared Celular/química , Pared Celular/ultraestructura , Endospermo , Epítopos , Matriz Extracelular/ultraestructura , Frutas , Glucanos , Inmunohistoquímica , Microscopía Electrónica de Rastreo , Mucoproteínas , Pectinas , Proteínas de Plantas , Polisacáridos , Xilanos
5.
Int J Mol Sci ; 20(21)2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31690047

RESUMEN

Phytosulfokine-α (PSK), a peptidyl plant growth factor, has been recognized as a promising intercellular signaling molecule involved in cellular proliferation and dedifferentiation. It was shown that PSK stimulated and enhanced cell divisions in protoplast cultures of several species leading to callus and proembryogenic mass formation. Since PSK had been shown to cause an increase in efficiency of somatic embryogenesis, it was reasonable to check the distribution of selected chemical components of the cell walls during the protoplast regeneration process. So far, especially for the carrot, a model species for in vitro cultures, it has not been specified what pectic, arabinogalactan protein (AGP) and extensin epitopes are involved in the reconstruction of the wall in protoplast-derived cells. Even less is known about the correlation between wall regeneration and the presence of PSK during the protoplast culture. Three Daucus taxa, including the cultivated carrot, were analyzed during protoplast regeneration. Several antibodies directed against wall components (anti-pectin: LM19, LM20, anti-AGP: JIM4, JIM8, JIM13 and anti-extensin: JIM12) were used. The obtained results indicate a diverse response of the used Daucus taxa to PSK in terms of protoplast-derived cell development, and diversity in the chemical composition of the cell walls in the control and the PSK-treated cultures.


Asunto(s)
Pared Celular/efectos de los fármacos , Daucus carota/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Pared Celular/metabolismo , Daucus carota/citología , Pectinas/metabolismo , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo
6.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234423

RESUMEN

Aluminum (Al) is one of the most important crust elements causing reduced plant production in acidic soils. Barley (Hordeum vulgare L.) is considered to be one of the crops that is most sensitive to Al, and the root cell wall is the primary target of Al toxicity. In this study, we evaluate the possible involvement of specific pectic epitopes in the cells of barley roots in response to aluminum exposure. We targeted four different pectic epitopes recognized by LM5, LM6, LM19, and LM20 antibodies using an immunocytochemical approach. Since Al becomes available and toxic to plants in acidic soils, we performed our analyses on barley roots that had been grown in acidic conditions (pH 4.0) with and without Al and in control conditions (pH 6.0). Differences connected with the presence and distribution of the pectic epitopes between the control and Al-treated roots were observed. In the Al-treated roots, pectins with galactan sidechains were detected with a visually lower fluorescence intensity than in the control roots while pectins with arabinan sidechains were abundantly present. Furthermore, esterified homogalacturonans (HGs) were present with a visually higher fluorescence intensity compared to the control, while methyl-esterified HGs were present in a similar amount. Based on the presented results, it was concluded that methyl-esterified HG can be a marker for newly arising cell walls. Additionally, histological changes were detected in the roots grown under Al exposure. Among them, an increase in root diameter, shortening of root cap, and increase in the size of rhizodermal cells and divisions of exodermal and cortex cells were observed. The presented data extend upon the knowledge on the chemical composition of the cell wall of barley root cells under stress conditions. The response of cells to Al can be expressed by the specific distribution of pectins in the cell wall and, thus, enables the knowledge on Al toxicity to be extended by explaining the mechanism by which Al inhibits root elongation.


Asunto(s)
Aluminio/toxicidad , Hordeum/crecimiento & desarrollo , Pectinas/análisis , Raíces de Plantas/crecimiento & desarrollo , Contaminantes del Suelo/toxicidad , Pared Celular/química , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Hordeum/química , Hordeum/efectos de los fármacos , Hordeum/ultraestructura , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/ultraestructura
7.
BMC Plant Biol ; 19(1): 151, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30999851

RESUMEN

BACKGROUND: Grafting is a technique widely used in horticulture. The processes involved in grafting are diverse, and the technique is commonly employed in studies focusing on the mechanisms that regulate cell differentiation or response of plants to abiotic stress. Information on the changes in the composition of the cell wall that occur during the grafting process is scarce. Therefore, this study was carried out for analyzing the composition of the cell wall using Arabidopsis hypocotyls as an example. During the study, the formation of a layer that covers the surface of the graft union was observed. So, this study also aimed to describe the histological and cellular changes that accompany autografting of Arabidopsis hypocotyls and to perform preliminary chemical and structural analyses of extracellular material that seals the graft union. RESULTS: During grafting, polyphenolic and lipid compounds were detected, along with extracellular deposition of carbohydrate/protein material. The spatiotemporal changes observed in the structure of the extracellular material included the formation of a fibrillar network, polymerization of the fibrillar network into a membranous layer, and the presence of bead-like structures on the surface of cells in established graft union. These bead-like structures appeared either "closed" or "open". Only three cell wall epitopes, namely: LM19 (un/low-methyl-esterified homogalacturonan), JIM11, and JIM20 (extensins), were detected abundantly on the cut surfaces that made the adhesion plane, as well as in the structure that covered the graft union and in the bead-like structures, during the subsequent stages of regeneration. CONCLUSIONS: To the best of our knowledge, this is the first report on the composition and structure of the extracellular material that gets deposited on the surface of graft union during Arabidopsis grafting. The results showed that unmethyl-esterified homogalacturonan and extensins are together involved in the adhesion of scion and stock, as well as taking part in sealing the graft union. The extracellular material is of importance not only due to the potential pectin-extensin interaction but also due to its origin. The findings presented here implicate a need for studies with biochemical approach for a detailed analysis of the composition and structure of the extracellular material.


Asunto(s)
Arabidopsis/fisiología , Glicoproteínas/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/citología , Arabidopsis/ultraestructura , Pared Celular/metabolismo , Epítopos/metabolismo , Esterificación , Hipocótilo/citología , Hipocótilo/fisiología , Hipocótilo/ultraestructura
8.
Int J Mol Sci ; 19(12)2018 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-30501101

RESUMEN

Effective regeneration of callus tissue into embryos and then into whole plants is essential for plant biotechnology. The embryonic potential is often low and can further decrease with time in culture, which limits the utilisation of calli for transformation procedures and in vitro propagation. In this study, we show that the loss of embryogenic potential in callus cultures of Brachypodium distachyon is progressive over time. Flow cytometry analyses indicated endoploidy levels increased in 60- and 90-day-old calli with effective loss of the 2C DNA content peak in the latter. Analysis of indolic compounds content revealed a decrease in 60- and 90-day-old calli compared to either freshly isolated explants or 30-day-old calli. Immunohistochemical analysis revealed a decrease in arabinogalactan proteins (AGP) signal with the time of culture, but extensin (EXT) epitopes either increased (JIM12 epitopes) or decreased (JIM11 epitopes). The transcript accumulation levels of AGPs and EXTs confirmed these results, with most of AGP and EXT transcripts gradually decreasing. Some chimeric EXT transcripts significantly increased on the 30th day of culture, perhaps because of an increased embryogenic potential. Selected somatic embryogenesis-related genes and cyclins demonstrated a gradual decrease of transcript accumulation for YUCCA (YUC), AINTEGUMENTA-LIKE (AIL), BABY BOOM (BBM), and CLAVATA (CLV3) genes, as well as for most of the cyclins, starting from the 30th day of culture. Notably, WUSCHEL (WUS) transcript was detectable only on the 30th and 60th day and was not detectable in the zygotic embryos and in 90-day-old calli.


Asunto(s)
Brachypodium/citología , Brachypodium/metabolismo , Brachypodium/inmunología , Pared Celular/metabolismo , Ciclinas/metabolismo , Desarrollo Embrionario/fisiología , Epítopos/inmunología , Epítopos/metabolismo , Citometría de Flujo , Glicoproteínas/metabolismo , Mucoproteínas/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Técnicas de Embriogénesis Somática de Plantas
9.
Plant Physiol Biochem ; 127: 573-589, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29727861

RESUMEN

During somatic embryogenesis (SE), explant cells undergo changes in the direction of their differentiation, which lead to diverse cell phenotypes. Although the genetic bases of the SE have been extensively studied in Arabidopsis thaliana, little is known about the chemical characteristics of the wall of the explant cells, which undergo changes in the direction of differentiation. Thus, we examined the occurrence of selected pectic and AGP epitopes in explant cells that display different phenotypes during SE. Explants examinations have been supplemented with an analysis of the ultrastructure. The deposition of selected pectic and AGP epitopes in somatic embryos was determined. Compared to an explant at the initial stage, a/embryogenic/totipotent and meristematic/pluripotent cells were characterized by a decrease in the presence of AGP epitopes, b/the presence of AGP epitopes in differentiated cells was similar, and c/an increase of analyzed epitopes was detected in the callus cells. Totipotent cells could be distinguished from pluripotent cells by: 1/the presence of the LM2 epitope in the latest one, 2/the appearance of the JIM16 epitope in totipotent cells, and 3/the more abundant presence of the JIM7 epitope in the totipotent cells. The LM5 epitope characterized the wall of the cells that were localized within the mass of embryogenic domain. The JIM8, JIM13 and JIM16 AGP epitopes appeared to be the most specific for the callus cells. The results indicate a relationship between the developmental state of the explant cells and the chemical composition of the cell walls.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Galactanos , Pectinas , Células Vegetales , Técnicas de Embriogénesis Somática de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Galactanos/biosíntesis , Galactanos/genética , Pectinas/biosíntesis , Pectinas/genética , Células Vegetales/metabolismo , Células Vegetales/ultraestructura
10.
PLoS One ; 12(3): e0173537, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28278222

RESUMEN

Long-term cultivated Fagopyrum tataricum (L.) Gaertn. (Tartary buckwheat) morphogenic and non-morphogenic callus lines are interesting systems for gaining a better understanding of the mechanisms that are responsible for the genetic stability and instability of a plant tissue culture. In this work, we used histological sections and transmission electron microscopy to identify and describe the morphology of the nuclei of all of the analysed callus lines. We demonstrated that the embryogenic callus cells had prominent round nuclei that did not contain heterochromatin clumps in contrast to the non-morphogenic callus lines, in which we found nuclei that had multiple lobes. Flow cytometry analysis revealed significant differences in the relative DNA content between the analysed calli. All of the analysed morphogenic callus lines had peaks from 2C to 8C as compared to the non-morphogenic callus lines, whose peaks did not reflect any regular DNA content and exceeded 8C and 16C for the line 6p1 and 16C and 32C for the callus line 10p2A. The results showed that non-morphogenic calli are of an aneuploid nature. The TUNEL test enabled us to visualise the nuclei that had DNA fragmentation in both the morphogenic and non-morphogenic lines. We revealed significantly higher frequencies of positively labelled nuclei in the non-morphogenic lines than in the morphogenic lines. In the case of the morphogenic lines, the highest observed frequency of TUNEL-positive nuclei was 7.7% for lines 2-3. In the non-morphogenic calli, the highest level of DNA damage (68.5%) was revealed in line 6p1. These results clearly indicate greater genome stability in the morphogenic lines.


Asunto(s)
Núcleo Celular/genética , Fagopyrum/crecimiento & desarrollo , Fagopyrum/genética , Inestabilidad Genómica , Morfogénesis/genética , Proteínas de Plantas/genética , Técnicas de Cultivo de Célula
11.
PLoS One ; 12(2): e0172682, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28234963

RESUMEN

The study was focused on assessing the presence of arabinogalactan proteins (AGPs) and pectins within the cell walls as well as prenyl lipids, sodium and chlorine content in leaves of Tilia x euchlora trees. The leaves that were analyzed were collected from trees with and without signs of damage that were all growing in the same salt stress conditions. The reason for undertaking these investigations was the observations over many years that indicated that there are trees that present a healthy appearance and trees that have visible symptoms of decay in the same habitat. Leaf samples were collected from trees growing in the median strip between roadways that have been intensively salted during the winter season for many years. The sodium content was determined using atomic spectrophotometry, chloride using potentiometric titration and poly-isoprenoids using HPLC/UV. AGPs and pectins were determined using immunohistochemistry methods. The immunohistochemical analysis showed that rhamnogalacturonans I (RG-I) and homogalacturonans were differentially distributed in leaves from healthy trees in contrast to leaves from injured trees. In the case of AGPs, the most visible difference was the presence of the JIM16 epitope. Chemical analyses of sodium and chloride showed that in the leaves from injured trees, the level of these ions was higher than in the leaves from healthy trees. Based on chromatographic analysis, four poly-isoprenoid alcohols were identified in the leaves of T. x euchlora. The levels of these lipids were higher in the leaves from healthy trees. The results suggest that the differences that were detected in the apoplast and symplasm may be part of the defensive strategy of T. x euchlora trees to salt stress, which rely on changes in the chemical composition of the cell wall with respect to the pectic and AGP epitopes and an increased synthesis of prenyl lipids.


Asunto(s)
Adaptación Fisiológica , Pared Celular/efectos de los fármacos , Lípidos/biosíntesis , Cloruro de Sodio/farmacología , Estrés Fisiológico , Terpenos/metabolismo , Tilia/efectos de los fármacos , Alcoholes/aislamiento & purificación , Alcoholes/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Lípidos/aislamiento & purificación , Mucoproteínas/biosíntesis , Mucoproteínas/aislamiento & purificación , Pectinas/biosíntesis , Pectinas/aislamiento & purificación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/aislamiento & purificación , Salinidad , Suelo/química , Terpenos/aislamiento & purificación , Tilia/metabolismo , Árboles/efectos de los fármacos , Árboles/metabolismo
12.
BMC Plant Biol ; 17(1): 25, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28122511

RESUMEN

BACKGROUND: The adventitious roots (AR) of plants share the same function as primary and lateral roots (LR), although their development is mainly an adaptive reaction to stress conditions. Regeneration of grafted plants is often accompanied by AR formation thus making the grafting technique a good model for studying AR initiation and development and their means of emergence. Pectins and arabinogalactan proteins (AGP) are helpful markers of particular cellular events, such as programmed cell death (PCD), elongation, proliferation or other differentiation events that accompany AR development. However, little is known about the distribution of pectins and AGPs during AR ontogeny, either in the primordium or stem tissues from which AR arise or their correspondence with these events during LR formation. RESULTS: AR were developed from different stem tissues such as parenchyma, xylem rays and the cambium, depending on the stem age and treatment (grafting versus cutting) of the parental tissue. Immunochemical analysis of the presence of pectic (LM8, LM19, LM20) and AGP (JIM8, JIM13, JIM16) epitopes in AR and AR-associated tissues showed differential, tissue-specific distributions of these epitopes. Two pectic epitopes (LM19, LM20) were developmentally regulated and the occurrence of the LM8 xylogalacturonan epitope in the root cap of the AR differed from other species described so far. AGP epitopes were abundantly present in the cytoplasmic compartments (mainly the tonoplast) and were correlated with the degree of cell vacuolisation. JIM8 and JIM13 epitopes were detected in the more advanced stages of primordium development, whereas the JIM16 epitope was present from the earliest division events of the initial AR cells. The comparison between AR and LR showed quantitative (AGP,) and qualitative (pectins) differences. CONCLUSION: The chemical compositions of adventitious and lateral root cells show differences that correlate with the different origins of these cells. In AR, developmental changes in the distribution of pectins and AGP suggest the turnover of wall compounds. Our data extend the knowledge about the distribution of pectin and AGP during non-embryogenic root development in a species that is important from an agronomic point of view.


Asunto(s)
Mucoproteínas/metabolismo , Raíces de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Epítopos/inmunología , Epítopos/metabolismo , Inmunohistoquímica , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/crecimiento & desarrollo , Mucoproteínas/inmunología , Pectinas/metabolismo , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo
13.
Protoplasma ; 254(2): 657-668, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27154759

RESUMEN

In apomictic Taraxacum species, the development of both the embryo and the endosperm does not require double fertilisation. However, a structural reduction of ovular transmitting tissue was not observed in apomictic dandelions. The aim of this study was to analyse the chemical composition of the cell walls to describe the presence of arabinogalactan proteins (AGPs), hemicellulose and some pectic epitopes in the micropylar transmitting tissue of apomictic Taraxacum. The results point to (1) the similar distribution of AGPs in different developmental stages, (2) the absence of highly methyl-esterified homogalacturonan (HG) in transmitting tissue of ovule containing a mature embryo sac and the appearance of this pectin domain in the young seed containing the embryo and endosperm, (3) the similar pattern of low methyl-esterified pectin occurrence in both an ovule and a young seed with an embryo and endosperm in apomictic Taraxacum and (4) the presence of hemicelluloses recognised by LM25 and LM21 antibodies in the reproductive structure of Taraxacum.


Asunto(s)
Apomixis , Epítopos/metabolismo , Mucoproteínas/metabolismo , Óvulo Vegetal/metabolismo , Pectinas/metabolismo , Polisacáridos/metabolismo , Taraxacum/metabolismo , Taraxacum/fisiología , Endospermo/citología , Inmunohistoquímica , Óvulo Vegetal/citología , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/ultraestructura , Proteínas de Plantas/metabolismo , Taraxacum/embriología , Taraxacum/ultraestructura
14.
PLoS One ; 11(11): e0167426, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27893856

RESUMEN

Brachypodium distachyon L. Beauv. (Brachypodium) is a species that has become an excellent model system for gaining a better understanding of various areas of grass biology and improving plant breeding. Although there are some studies of an in vitro Brachypodium culture including somatic embryogenesis, detailed knowledge of the composition of the main cell wall components in the embryogenic callus in this species is missing. Therefore, using the immunocytochemical approach, we targeted 17 different antigens of which five were against the arabinogalactan proteins (AGP), three were against extensins, six recognised pectic epitopes and two recognised hemicelluloses. These studies were complemented by histological and scanning electron microscopy (SEM) analyses. We revealed that the characteristic cell wall components of Brachypodium embryogenic calli are AGP epitopes that are recognised by the JIM16 and LM2 antibodies, an extensin epitope that is recognised by the JIM11 antibody and a pectic epitopes that is recognised by the LM6 antibody. Furthermore, we demonstrated that AGPs and pectins are the components of the extracellular matrix network in Brachypodium embryogenic culture. Additionally, SEM analysis demonstrated the presence of an extracellular matrix on the surface of the calli cells. In conclusion, the chemical compositions of the cell walls and ECMSN of Brachypodium callus show spatial differences that correlate with the embryogenic character of the cells. Thus, the distribution of pectins, AGPs and hemicelluloses can be used as molecular markers of embryogenic cells. The presented data extends the knowledge about the chemical composition of the embryogenic callus cells of Brachypodium.


Asunto(s)
Brachypodium/metabolismo , Callosidades/metabolismo , Pared Celular/metabolismo , Mucoproteínas/metabolismo , Técnicas de Embriogénesis Somática de Plantas , Brachypodium/embriología , Brachypodium/ultraestructura , Pared Celular/ultraestructura , Microscopía Electrónica de Rastreo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo
15.
Protoplasma ; 249(1): 117-29, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21424614

RESUMEN

The ultrastructure, cuticle, and distribution of pectic epitopes in outer periclinal walls of protodermal cells of Daucus carota zygotic and somatic embryos from solid and suspension culture were investigated. Lipid substances were present as a continuous layer in zygotic and somatic embryos cultured on solid medium. Somatic embryos from suspension cultures were devoid of cuticle. The ultrastructure of the outer walls of protodermis of embryos was similar in zygotic and somatic embryos from solid culture. Fibrillar material was observed on the surface of somatic embryos. In zygotic embryos, in cotyledons and root pectic epitopes recognised by the antibody JIM5 were observed in all cell walls. In hypocotyls of these embryos, these pectic epitopes were not present in the outer periclinal and anticlinal walls of the protodermis. In somatic embryos from solid media, distribution of pectic epitopes recognised by JIM5 was similar to that described for their zygotic counterparts. In somatic embryos from suspension culture, pectic epitopes recognised by JIM5 were detected in all cell walls. In the cotyledons and hypocotyls, a punctate signal was observed on the outside of the protodermis. Pectic epitopes recognised by JIM7 were present in all cell walls independent of embryo organs. In zygotic embryos, this signal was punctate; in somatic embryos from both cultures, this signal was uniformly distributed. In embryos from suspension cultures, a punctate signal was detected outside the surface of cotyledon and hypocotyl. These data are discussed in light of current models for embryogenesis and the influence of culture conditions on cell wall structure.


Asunto(s)
Pared Celular/química , Medios de Cultivo/química , Daucus carota/química , Técnicas de Embriogénesis Somática de Plantas/métodos , Semillas/química , Anticuerpos/química , Pared Celular/ultraestructura , Cotiledón/química , Daucus carota/embriología , Epítopos/química , Hipocótilo/química , Inmunohistoquímica , Lípidos/química , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Pectinas/química , Células Vegetales/química , Raíces de Plantas/química , Semillas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA