Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 19(1): 151, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30999851

RESUMEN

BACKGROUND: Grafting is a technique widely used in horticulture. The processes involved in grafting are diverse, and the technique is commonly employed in studies focusing on the mechanisms that regulate cell differentiation or response of plants to abiotic stress. Information on the changes in the composition of the cell wall that occur during the grafting process is scarce. Therefore, this study was carried out for analyzing the composition of the cell wall using Arabidopsis hypocotyls as an example. During the study, the formation of a layer that covers the surface of the graft union was observed. So, this study also aimed to describe the histological and cellular changes that accompany autografting of Arabidopsis hypocotyls and to perform preliminary chemical and structural analyses of extracellular material that seals the graft union. RESULTS: During grafting, polyphenolic and lipid compounds were detected, along with extracellular deposition of carbohydrate/protein material. The spatiotemporal changes observed in the structure of the extracellular material included the formation of a fibrillar network, polymerization of the fibrillar network into a membranous layer, and the presence of bead-like structures on the surface of cells in established graft union. These bead-like structures appeared either "closed" or "open". Only three cell wall epitopes, namely: LM19 (un/low-methyl-esterified homogalacturonan), JIM11, and JIM20 (extensins), were detected abundantly on the cut surfaces that made the adhesion plane, as well as in the structure that covered the graft union and in the bead-like structures, during the subsequent stages of regeneration. CONCLUSIONS: To the best of our knowledge, this is the first report on the composition and structure of the extracellular material that gets deposited on the surface of graft union during Arabidopsis grafting. The results showed that unmethyl-esterified homogalacturonan and extensins are together involved in the adhesion of scion and stock, as well as taking part in sealing the graft union. The extracellular material is of importance not only due to the potential pectin-extensin interaction but also due to its origin. The findings presented here implicate a need for studies with biochemical approach for a detailed analysis of the composition and structure of the extracellular material.


Asunto(s)
Arabidopsis/fisiología , Glicoproteínas/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/citología , Arabidopsis/ultraestructura , Pared Celular/metabolismo , Epítopos/metabolismo , Esterificación , Hipocótilo/citología , Hipocótilo/fisiología , Hipocótilo/ultraestructura
2.
Plant Physiol Biochem ; 127: 573-589, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29727861

RESUMEN

During somatic embryogenesis (SE), explant cells undergo changes in the direction of their differentiation, which lead to diverse cell phenotypes. Although the genetic bases of the SE have been extensively studied in Arabidopsis thaliana, little is known about the chemical characteristics of the wall of the explant cells, which undergo changes in the direction of differentiation. Thus, we examined the occurrence of selected pectic and AGP epitopes in explant cells that display different phenotypes during SE. Explants examinations have been supplemented with an analysis of the ultrastructure. The deposition of selected pectic and AGP epitopes in somatic embryos was determined. Compared to an explant at the initial stage, a/embryogenic/totipotent and meristematic/pluripotent cells were characterized by a decrease in the presence of AGP epitopes, b/the presence of AGP epitopes in differentiated cells was similar, and c/an increase of analyzed epitopes was detected in the callus cells. Totipotent cells could be distinguished from pluripotent cells by: 1/the presence of the LM2 epitope in the latest one, 2/the appearance of the JIM16 epitope in totipotent cells, and 3/the more abundant presence of the JIM7 epitope in the totipotent cells. The LM5 epitope characterized the wall of the cells that were localized within the mass of embryogenic domain. The JIM8, JIM13 and JIM16 AGP epitopes appeared to be the most specific for the callus cells. The results indicate a relationship between the developmental state of the explant cells and the chemical composition of the cell walls.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Galactanos , Pectinas , Células Vegetales , Técnicas de Embriogénesis Somática de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Galactanos/biosíntesis , Galactanos/genética , Pectinas/biosíntesis , Pectinas/genética , Células Vegetales/metabolismo , Células Vegetales/ultraestructura
3.
BMC Plant Biol ; 17(1): 25, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28122511

RESUMEN

BACKGROUND: The adventitious roots (AR) of plants share the same function as primary and lateral roots (LR), although their development is mainly an adaptive reaction to stress conditions. Regeneration of grafted plants is often accompanied by AR formation thus making the grafting technique a good model for studying AR initiation and development and their means of emergence. Pectins and arabinogalactan proteins (AGP) are helpful markers of particular cellular events, such as programmed cell death (PCD), elongation, proliferation or other differentiation events that accompany AR development. However, little is known about the distribution of pectins and AGPs during AR ontogeny, either in the primordium or stem tissues from which AR arise or their correspondence with these events during LR formation. RESULTS: AR were developed from different stem tissues such as parenchyma, xylem rays and the cambium, depending on the stem age and treatment (grafting versus cutting) of the parental tissue. Immunochemical analysis of the presence of pectic (LM8, LM19, LM20) and AGP (JIM8, JIM13, JIM16) epitopes in AR and AR-associated tissues showed differential, tissue-specific distributions of these epitopes. Two pectic epitopes (LM19, LM20) were developmentally regulated and the occurrence of the LM8 xylogalacturonan epitope in the root cap of the AR differed from other species described so far. AGP epitopes were abundantly present in the cytoplasmic compartments (mainly the tonoplast) and were correlated with the degree of cell vacuolisation. JIM8 and JIM13 epitopes were detected in the more advanced stages of primordium development, whereas the JIM16 epitope was present from the earliest division events of the initial AR cells. The comparison between AR and LR showed quantitative (AGP,) and qualitative (pectins) differences. CONCLUSION: The chemical compositions of adventitious and lateral root cells show differences that correlate with the different origins of these cells. In AR, developmental changes in the distribution of pectins and AGP suggest the turnover of wall compounds. Our data extend the knowledge about the distribution of pectin and AGP during non-embryogenic root development in a species that is important from an agronomic point of view.


Asunto(s)
Mucoproteínas/metabolismo , Raíces de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Epítopos/inmunología , Epítopos/metabolismo , Inmunohistoquímica , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/crecimiento & desarrollo , Mucoproteínas/inmunología , Pectinas/metabolismo , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo
4.
Protoplasma ; 254(2): 657-668, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27154759

RESUMEN

In apomictic Taraxacum species, the development of both the embryo and the endosperm does not require double fertilisation. However, a structural reduction of ovular transmitting tissue was not observed in apomictic dandelions. The aim of this study was to analyse the chemical composition of the cell walls to describe the presence of arabinogalactan proteins (AGPs), hemicellulose and some pectic epitopes in the micropylar transmitting tissue of apomictic Taraxacum. The results point to (1) the similar distribution of AGPs in different developmental stages, (2) the absence of highly methyl-esterified homogalacturonan (HG) in transmitting tissue of ovule containing a mature embryo sac and the appearance of this pectin domain in the young seed containing the embryo and endosperm, (3) the similar pattern of low methyl-esterified pectin occurrence in both an ovule and a young seed with an embryo and endosperm in apomictic Taraxacum and (4) the presence of hemicelluloses recognised by LM25 and LM21 antibodies in the reproductive structure of Taraxacum.


Asunto(s)
Apomixis , Epítopos/metabolismo , Mucoproteínas/metabolismo , Óvulo Vegetal/metabolismo , Pectinas/metabolismo , Polisacáridos/metabolismo , Taraxacum/metabolismo , Taraxacum/fisiología , Endospermo/citología , Inmunohistoquímica , Óvulo Vegetal/citología , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/ultraestructura , Proteínas de Plantas/metabolismo , Taraxacum/embriología , Taraxacum/ultraestructura
5.
Protoplasma ; 249(1): 117-29, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21424614

RESUMEN

The ultrastructure, cuticle, and distribution of pectic epitopes in outer periclinal walls of protodermal cells of Daucus carota zygotic and somatic embryos from solid and suspension culture were investigated. Lipid substances were present as a continuous layer in zygotic and somatic embryos cultured on solid medium. Somatic embryos from suspension cultures were devoid of cuticle. The ultrastructure of the outer walls of protodermis of embryos was similar in zygotic and somatic embryos from solid culture. Fibrillar material was observed on the surface of somatic embryos. In zygotic embryos, in cotyledons and root pectic epitopes recognised by the antibody JIM5 were observed in all cell walls. In hypocotyls of these embryos, these pectic epitopes were not present in the outer periclinal and anticlinal walls of the protodermis. In somatic embryos from solid media, distribution of pectic epitopes recognised by JIM5 was similar to that described for their zygotic counterparts. In somatic embryos from suspension culture, pectic epitopes recognised by JIM5 were detected in all cell walls. In the cotyledons and hypocotyls, a punctate signal was observed on the outside of the protodermis. Pectic epitopes recognised by JIM7 were present in all cell walls independent of embryo organs. In zygotic embryos, this signal was punctate; in somatic embryos from both cultures, this signal was uniformly distributed. In embryos from suspension cultures, a punctate signal was detected outside the surface of cotyledon and hypocotyl. These data are discussed in light of current models for embryogenesis and the influence of culture conditions on cell wall structure.


Asunto(s)
Pared Celular/química , Medios de Cultivo/química , Daucus carota/química , Técnicas de Embriogénesis Somática de Plantas/métodos , Semillas/química , Anticuerpos/química , Pared Celular/ultraestructura , Cotiledón/química , Daucus carota/embriología , Epítopos/química , Hipocótilo/química , Inmunohistoquímica , Lípidos/química , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Pectinas/química , Células Vegetales/química , Raíces de Plantas/química , Semillas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA