Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 13879, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620347

RESUMEN

Several studies have shown beneficial effects of short exposure to oxidative stress on stored fruit, such as better preservation, increased firmness, preservation of polyphenolic compounds, and reduced risk of postharvest disorders such as bitter pit and superficial scald in apples. In this study the effect of short-term oxidative stress conditions on the physiology of apple fruit was investigated. Apple fruit of three cultivars were exposed to hypoxic storage conditions of various lengths to induce anaerobiosis. The response of apple fruit to short-term oxidative stress was evaluated by means of cell wall immunolabeling and atomic force microscopy. In addition, the antioxidant capacity and antioxidative activity of apple peels was assessed. Through various techniques, it was shown that short-term oxidative stress conditions promote specific enzymatic activity that induces changes in the cell wall of apple fruit cells. Exposure to short-term stress resulted in the remodeling of cell wall pectic polysaccharides, observed as an increase in the size and complexity of extracted oxalate pectin. Structural changes in the cell wall were followed by an increase in Young's modulus (compressive stiffness of a solid material, expressed as the relationship between stress and axial strain) of the cell wall material. The data presented in this paper show in a novel way how storage under short-term oxidative stress modifies the cell wall of apple fruit at the molecular level.


Asunto(s)
Malus , Células Vegetales , Estrés Oxidativo , Membrana Celular , Pared Celular , Antioxidantes , Pectinas
2.
Food Chem ; 429: 136996, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37506661

RESUMEN

The properties of bacterial cellulose (BC)-based films produced by in situ biosynthesis with various polysaccharides (water-soluble pectin, arabinan, rhamnogalacturonan I, arabinoxylan, xyloglucan, glucomannan) were investigated. The addition of the polysaccharides to the bacterial growth environment changed the composition of the films by incorporating characteristic monosaccharides. BC-based films contained up to 26.7 % of non-cellulosic polysaccharides. The applied modification had a clear impact on water sorption and caused a decrease in the thermal stability of most BC films, which was connected with the depletion of geometrical dimensions of cellulose nanofibers observed with AFM. The FT-IR and Raman spectra demonstrated a decrease in % Iα of cellulose films, most notably for xyloglucan and glucomannan, as well as a change in their degree of crystallinity and the length of cellulose chains. The addition of xyloglucan had the most pronounced effect on film hardening; the other additives had a similar but lesser effect.


Asunto(s)
Celulosa , Polisacáridos , Espectroscopía Infrarroja por Transformada de Fourier , Pectinas
3.
Food Chem ; 381: 132151, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35065837

RESUMEN

Strawberry is very perishable fruit with rapid postharvest loss of quality and high susceptibility to microbial infections. In this work we study pectin modifications and microbiota and mycobiota composition in strawberry in conventional and organic cultivation systems. The enzymatic activity during postharvest storage of both types of strawberry was divided at the fifth day of storage into two phases: postharvest changes and rotting. Pectin molecules extracted from organic strawberries were longer and more branched compared to the conventional strawberries; however a more noticeable reorganization of molecular structure occurred. The sequential action of the pectinolytic enzymes had a direct effect on the molecular structure of pectin fractions. The observed changes in pectin structure relate to the synergistic activity of pectinolytic enzymes and some microorganisms. The organic system was characterized by a greater number and variety of bacteria and fungi during storage as compared to the conventional system.


Asunto(s)
Fragaria , Microbiota , Fragaria/química , Frutas/química , Hongos/genética , Pectinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA