Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Chem ; 291(32): 16740-52, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27252378

RESUMEN

Amaryllidaceae alkaloids are a large group of plant natural products with over 300 documented structures and diverse biological activities. Several groups of Amaryllidaceae alkaloids including the hemanthamine- and crinine-type alkaloids show promise as anticancer agents. Two reduction reactions are required for the production of these compounds: the reduction of norcraugsodine to norbelladine and the reduction of noroxomaritidine to normaritidine, with the enantiomer of noroxomaritidine dictating whether the derivatives will be the crinine-type or hemanthamine-type. It is also possible for the carbon-carbon double bond of noroxomaritidine to be reduced, forming the precursor for maritinamine or elwesine depending on the enantiomer reduced to an oxomaritinamine product. In this study, a short chain alcohol dehydrogenase/reductase that co-expresses with the previously discovered norbelladine 4'-O-methyltransferase from Narcissus sp. and Galanthus spp. was cloned and expressed in Escherichia coli Biochemical analyses and x-ray crystallography indicates that this protein functions as a noroxomaritidine reductase that forms oxomaritinamine from noroxomaritidine through a carbon-carbon double bond reduction. The enzyme also reduces norcraugsodine to norbelladine with a 400-fold lower specific activity. These studies identify a missing step in the biosynthesis of this pharmacologically important class of plant natural products.


Asunto(s)
Alcaloides de Amaryllidaceae/química , Galanthus/enzimología , Narcissus/enzimología , Oxidorreductasas/química , Proteínas de Plantas/química , Alcaloides de Amaryllidaceae/metabolismo , Galanthus/genética , Narcissus/genética , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-24062780

RESUMEN

Noni has been used in traditional medicine and as food for thousands of years. While the fruits serve as food and internal medicine, leaves were traditionally used only topically. In recent years, concern regarding the possible content of anthraquinones in noni has led to scrutiny by the European Food Safety Authority. Little research existed on the content of anthraquinones in different noni preparations, with no information about the potential effect of harvest and preparation methods. Our research focused on lucidin, alizarin, and rubiadin, the most important anthraquinones from a health perspective. We found that the production process (fermentation/juice production versus drying/lyophilization) has no effect on the anthraquinone content. The source product, however, does have implications: noni fruit puree from which seeds had been removed as well as consumer products produced from such puree had no detectable amounts of any anthraquinones. Products that did contain seed or leaf material in all cases did contain partly significant amounts of anthraquinones. To alleviate safety concerns, we suggest that noni products, whether fermented or unfermented juice or powder, should be derived only from fully ripe noni fruits, and that any seed material needs to be removed during the production process.

3.
Biopolymers ; 100(5): 438-52, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23897543

RESUMEN

Cyclotides are a unique class of ribosomally synthesized cysteine-rich miniproteins characterized by a head-to-tail cyclized backbone and three conserved disulfide-bonds in a knotted arrangement. Originally they were discovered in the coffee-family plant Oldenlandia affinis (Rubiaceae) and have since been identified in several species of the violet, cucurbit, pea, potato, and grass families. However, the identification of novel cyclotide-containing plant species still is a major challenge due to the lack of a rapid and accurate analytical workflow in particular for large sampling numbers. As a consequence, their phylogeny in the plant kingdom remains unclear. To gain further insight into the distribution and evolution of plant cyclotides, we analyzed ∼300 species of >40 different families, with special emphasis on plants from the order Gentianales. For this purpose, we have developed a refined screening methodology combining chemical analysis of plant extracts and bioinformatic analysis of transcript databases. Using mass spectrometry and transcriptome-mining, we identified nine novel cyclotide-containing species and their related cyclotide precursor genes in the tribe Palicoureeae. The characterization of novel peptide sequences underlines the high variability and plasticity of the cyclotide framework, and a comparison of novel precursor proteins from Carapichea ipecacuanha illustrated their typical cyclotide gene architectures. Phylogenetic analysis of their distribution within the Psychotria alliance revealed cyclotides to be restricted to Palicourea, Margaritopsis, Notopleura, Carapichea, Chassalia, and Geophila. In line with previous reports, our findings confirm cyclotides to be one of the largest peptide families within the plant kingdom and suggest that their total number may exceed tens of thousands.


Asunto(s)
Ciclotidas , Rubiaceae , Secuencia de Aminoácidos , Ciclotidas/genética , Cistina , Datos de Secuencia Molecular , Péptidos Cíclicos/genética , Filogenia , Proteínas de Plantas/química , Rubiaceae/química
4.
Phytochemistry ; 91: 187-97, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23597491

RESUMEN

We report the development and testing of an accurate mass-time (AMT) tag approach for the LC/MS-based identification of plant natural products (PNPs) in complex extracts. An AMT tag library was developed for approximately 500 PNPs with diverse chemical structures, detected in electrospray and atmospheric pressure chemical ionization modes (both positive and negative polarities). In addition, to enable peak annotations with high confidence, MS/MS spectra were acquired with three different fragmentation energies. The LC/MS and MS/MS data sets were integrated into online spectral search tools and repositories (Spektraris and MassBank), thus allowing users to interrogate their own data sets for the potential presence of PNPs. The utility of the AMT tag library approach is demonstrated by the detection and annotation of active principles in 27 different medicinal plant species with diverse chemical constituents.


Asunto(s)
Productos Biológicos/metabolismo , Plantas Medicinales/metabolismo , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Estructura Molecular , Plantas Medicinales/crecimiento & desarrollo , Factores de Tiempo
5.
Planta ; 233(6): 1185-97, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21327819

RESUMEN

Berberine, palmatine and dehydrocoreximine are end products of protoberberine biosynthesis. These quaternary protoberberines are elicitor inducible and, like other phytoalexins, are highly oxidized. The oxidative potential of these compounds is derived from a diverse array of biosynthetic steps involving hydroxylation, intra-molecular C-C coupling, methylenedioxy bridge formation and a dehydrogenation reaction as the final step in the biosynthesis. For the berberine biosynthetic pathway, the identification of the dehydrogenase gene is the last remaining uncharacterized step in the elucidation of the biosynthesis at the gene level. An enzyme able to catalyze these reactions, (S)-tetrahydroprotoberberine oxidase (STOX, EC 1.3.3.8), was originally purified in the 1980s from suspension cells of Berberis wilsoniae and identified as a flavoprotein (Amann et al. 1984). We report enzymatic activity from recombinant STOX expressed in Spodoptera frugiperda Sf9 insect cells. The coding sequence was derived successively from peptide sequences of purified STOX protein. Furthermore, a recombinant oxidase with protoberberine dehydrogenase activity was obtained from a cDNA library of Argemone mexicana, a traditional medicinal plant that contains protoberberine alkaloids. The relationship of the two enzymes is discussed regarding their enzymatic activity, phylogeny and the alkaloid occurrence in the plants. Potential substrate binding and STOX-specific amino acid residues were identified based on sequence analysis and homology modeling.


Asunto(s)
Argemone/enzimología , Berberis/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/biosíntesis , Secuencia de Aminoácidos , Animales , Argemone/genética , Argemone/metabolismo , Secuencia de Bases , Alcaloides de Berberina/metabolismo , Berberis/genética , Berberis/metabolismo , Activación Enzimática , Flavoproteínas/metabolismo , Regulación de la Expresión Génica de las Plantas , Insectos/enzimología , Insectos/genética , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Filogenia , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Homología de Secuencia , Sesquiterpenos/metabolismo , Transformación Genética , Fitoalexinas
6.
J Biol Chem ; 286(8): 6532-41, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21169353

RESUMEN

The opium poppy (Papaver somniferum L.) is one of the oldest known medicinal plants. In the biosynthetic pathway for morphine and codeine, salutaridine is reduced to salutaridinol by salutaridine reductase (SalR; EC 1.1.1.248) using NADPH as coenzyme. Here, we report the atomic structure of SalR to a resolution of ∼1.9 Šin the presence of NADPH. The core structure is highly homologous to other members of the short chain dehydrogenase/reductase family. The major difference is that the nicotinamide moiety and the substrate-binding pocket are covered by a loop (residues 265-279), on top of which lies a large "flap"-like domain (residues 105-140). This configuration appears to be a combination of the two common structural themes found in other members of the short chain dehydrogenase/reductase family. Previous modeling studies suggested that substrate inhibition is due to mutually exclusive productive and nonproductive modes of substrate binding in the active site. This model was tested via site-directed mutagenesis, and a number of these mutations abrogated substrate inhibition. However, the atomic structure of SalR shows that these mutated residues are instead distributed over a wide area of the enzyme, and many are not in the active site. To explain how residues distal to the active site might affect catalysis, a model is presented whereby SalR may undergo significant conformational changes during catalytic turnover.


Asunto(s)
Modelos Moleculares , NADP/química , Oxidorreductasas/química , Papaver/enzimología , Proteínas de Plantas/química , Catálisis , Cristalografía por Rayos X , Mutación , NADP/genética , NADP/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Papaver/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína
7.
Plant Signal Behav ; 5(7): 875-7, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20495341

RESUMEN

Ipecac alkaloids produced in the medicinal plant Psychotria ipecacuanha such as emetine and cephaeline possess a monoterpenoid-tetrahydroisoquinoline skeleton, which is formed by condensation of dopamine and secologanin. The condensation products are deglucosylated, and the resulting aglycon is further processed to protoemetine, which is condensed with the second molecule of dopamine, followed by conversion into cephaeline and emetine. Although four hydroxy groups derived from two molecules of dopamine need to be methylated to form emetine, the order of O-methylation reactions had been veiled. We recently identified three Ipecac alkaloid O-methyltransferases (IpeOMT1-IpeOMT3) that are sufficient for catalyzing O-methylations of all four hydroxy groups. Detailed characterization of their catalytic properties with integration of that of the previously identified Ipecac alkaloid ß-glucosidase (IpeGlu1) revealed a large portion of the biosynthetic pathway of Ipecac alkaloids. The results provide proof-of-concept to the significance and the usefulness of the biosynthetic pathway strategy by EST analysis coupled with recombinant enzyme characterization. At the same time, however, the results raised an intriguing question about the subcellular network between the biosynthetic enzymes and intermediates. Here, we provide additional discussion about this point, and indicate what remains to be elucidated.

8.
J Biol Chem ; 285(10): 7722-38, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20061395

RESUMEN

The medicinal plant Psychotria ipecacuanha produces ipecac alkaloids, a series of monoterpenoid-isoquinoline alkaloids such as emetine and cephaeline, whose biosynthesis derives from condensation of dopamine and secologanin. Here, we identified three cDNAs, IpeOMT1-IpeOMT3, encoding ipecac alkaloid O-methyltransferases (OMTs) from P. ipecacuanha. They were coordinately transcribed with the recently identified ipecac alkaloid beta-glucosidase Ipeglu1. Their amino acid sequences were closely related to each other and rather to the flavonoid OMTs than to the OMTs involved in benzylisoquinoline alkaloid biosynthesis. Characterization of the recombinant IpeOMT enzymes with integration of the enzymatic properties of the IpeGlu1 revealed that emetine biosynthesis branches off from N-deacetylisoipecoside through its 6-O-methylation by IpeOMT1, with a minor contribution by IpeOMT2, followed by deglucosylation by IpeGlu1. The 7-hydroxy group of the isoquinoline skeleton of the aglycon is methylated by IpeOMT3 prior to the formation of protoemetine that is condensed with a second dopamine molecule, followed by sequential O-methylations by IpeOMT2 and IpeOMT1 to form cephaeline and emetine, respectively. In addition to this central pathway of ipecac alkaloid biosynthesis, formation of all methyl derivatives of ipecac alkaloids in P. ipecacuanha could be explained by the enzymatic activities of IpeOMT1-IpeOMT3, indicating that they are sufficient for all O-methylation reactions of ipecac alkaloid biosynthesis.


Asunto(s)
Cephaelis , Eméticos/metabolismo , Emetina/análogos & derivados , Emetina/biosíntesis , Isoenzimas/metabolismo , Metiltransferasas/metabolismo , Cephaelis/anatomía & histología , Cephaelis/química , Cephaelis/enzimología , Cromatografía Liquida , Eméticos/química , Emetina/química , Isoenzimas/clasificación , Isoenzimas/genética , Metilación , Metiltransferasas/clasificación , Metiltransferasas/genética , Datos de Secuencia Molecular , Estructura Molecular , Filogenia , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Masas en Tándem
9.
J Biol Chem ; 283(50): 34650-9, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18927081

RESUMEN

Ipecac alkaloids produced in the medicinal plant Psychotria ipecacuanha such as emetine and cephaeline possess a monoterpenoid-tetrahydroisoquinoline skeleton, which is formed by condensation of dopamine and secologanin. Deglucosylation of one of the condensed products N-deacetylisoipecoside (1 alpha(S)-epimer) is considered to be a part of the reactions for emetine biosynthesis, whereas its 1 beta(R)-epimer N-deacetylipecoside is converted to ipecoside in P. ipecacuanha. Here, we isolated a cDNA clone Ipeglu1 encoding Ipecac alkaloid beta-D-glucosidase from P. ipecacuanha. The deduced protein showed 54 and 48% identities to raucaffricine beta-glucosidase and strictosidine beta-glucosidase, respectively. Recombinant IpeGlu1 enzyme preferentially hydrolyzed glucosidic Ipecac alkaloids except for their lactams, but showed poor or no activity toward other substrates, including terpenoid-indole alkaloid glucosides. Liquid chromatography-tandem mass spectrometry analysis of deglucosylated products of N-deacetylisoipecoside revealed spontaneous transitions of the highly reactive aglycons, one of which was supposed to be the intermediate for emetine biosynthesis. IpeGlu1 activity was extremely poor toward 7-O-methyl and 6,7-O,O-dimethyl derivatives. However, 6-O-methyl derivatives were hydrolyzed as efficiently as non-methylated substrates, suggesting the possibility of 6-O-methylation prior to deglucosylation by IpeGlu1. In contrast to the strictosidine beta-glucosidase that stereospecifically hydrolyzes 3 alpha(S)-epimer in terpenoid-indole alkaloid biosynthesis, IpeGlu1 lacked stereospecificity for its substrates where 1 beta(R)-epimers were preferred to 1 alpha(S)-epimers, although ipecoside (1 beta(R)) is a major alkaloidal glucoside in P. ipecacuanha, suggesting the compartmentalization of IpeGlu1 from ipecoside. These facts have significant implications for distinct physiological roles of 1 alpha(S)- and 1 beta(R)-epimers and for the involvement of IpeGlu1 in the metabolic fate of both of them.


Asunto(s)
Alcaloides/química , Cephaelis/enzimología , Isoquinolinas/química , Terpenos/química , beta-Glucosidasa/química , Bioquímica/métodos , Cephaelis/metabolismo , ADN Complementario/metabolismo , Escherichia coli/metabolismo , Cinética , Modelos Químicos , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Especificidad por Sustrato
10.
Phytochemistry ; 68(21): 2670-7, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17643455

RESUMEN

Hyperforin is a pharmacologically active constituent of Hypericum perforatum (St. John's wort). In vitro cultures of this medicinal plant were found to contain hyperforin and three related polyprenylated acylphloroglucinol derivatives. The accumulation of these compounds was coupled to shoot regeneration, with secohyperforin being the major constituent in morphogenic cultures. The structure of secohyperforin was elucidated online by LC-DAD, -MS, and -NMR. In multiple shoot cultures, the ratio of hyperforin to secohyperforin was strongly influenced by the phytohormones N6-benzylaminopurine (BAP) and naphthalene-1-acetic acid (NAA). While increasing concentrations of BAP stimulated the formation of hyperforin, increasing concentrations of NAA elevated the level of secohyperforin. No differential stimulation was observed after elicitor treatment. Hyperforin and secohyperforin are proposed to arise from a branch point in the biosynthetic pathway.


Asunto(s)
Hypericum/química , Floroglucinol/análogos & derivados , Terpenos/química , Compuestos Bicíclicos con Puentes/química , Células Cultivadas , Cromatografía de Gases y Espectrometría de Masas , Hypericum/metabolismo , Espectroscopía de Resonancia Magnética , Estructura Molecular , Floroglucinol/química , Floroglucinol/metabolismo , Componentes Aéreos de las Plantas , Extractos Vegetales/química , Terpenos/metabolismo , Técnicas de Cultivo de Tejidos
11.
Metab Eng ; 9(2): 169-76, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17189709

RESUMEN

Morphine biosynthesis was genetically engineered in an industrial elite line of the opium poppy (Papaver somniferum L.), to modify the production of alkaloids in plants. The cytochrome P-450-dependent monooxygenase (S)-N-methylcoclaurine 3'-hydroxylase (CYP80B3) lies on the pathway to the benzylisoquinoline alkaloid branch point intermediate (S)-reticuline. Overexpression of cyp80b3 cDNA resulted in an up to 450% increase in the amount of total alkaloid in latex. This increase occurred either without changing the ratio of the individual alkaloids, or together with an overall increase in the ratio of morphine. Correspondingly, antisense-cyp80b3 cDNA expressed in opium poppy caused a reduction of total alkaloid in latex up to 84%, suggesting that the observed phenotypes were dependent on the presence of the transgene. This study found compelling evidence, that cyp80b3 is a key regulation step in morphine biosynthesis and provides practical means to genetically engineer valuable secondary metabolites in this important medicinal plant.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Mejoramiento Genético/métodos , Morfina/metabolismo , Papaver/fisiología , Ingeniería de Proteínas/métodos , Agricultura/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Transfección/métodos
12.
Phytochemistry ; 68(2): 189-202, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17113612

RESUMEN

Papaver alkaloids play a major role in medicine and pharmacy. In this study, [ring-(13)C(6)]-tyramine as a biogenetic precursor of these alkaloids was fed to Papaver somniferum seedlings. The alkaloid pattern was elucidated both by direct infusion high-resolution ESI-FT-ICR mass spectrometry and liquid chromatography/electrospray tandem mass spectrometry. Thus, based on this procedure, the structure of about 20 alkaloids displaying an incorporation of the labeled tyramine could be elucidated. These alkaloids belong to different classes, e.g. morphinan, benzylisoquinoline, protoberberine, benzo[c]phenanthridine, phthalide isoquinoline and protopine. The valuable information gained from the alkaloid profile demonstrates that the combination of these two spectrometric methods represents a powerful tool for evaluating biochemical pathways and facilitates the study of the flux of distant precursors into these natural products.


Asunto(s)
Alcaloides/análisis , Alcaloides/química , Papaver/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Tiramina/metabolismo , Isótopos de Carbono , Cromatografía Liquida , Extractos Vegetales/análisis , Extractos Vegetales/química , Plantones/química
13.
Phytochemistry ; 67(15): 1613-20, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16445953

RESUMEN

Geranylgeranyl diphosphate phosphatase is an enzyme catalyzing the dephosphorylation of geranylgeranyl diphosphate (GGPP) to form geranylgeraniol (GGOH). The enzyme activity of GGPP phosphatase was detected in leaves of Croton stellatopilosus, a Thai medicinal plant containing plaunotol, a commercial anti-peptic acyclic diterpenoid. Enzymological studies of GGPP phosphatase in C. stellatopilosis leaves revealed that the enzyme is a membrane-bound protein that could be removed from 20,000g pellet by 0.1% Triton X-100 without significant loss of enzyme activity. The solubilized enzyme preparation was separated into two activity peaks, PI and PII, by BioGel A gel filtration chromatography. PI and PII were both partially purified and characterized. PI appeared to be a tetrameric enzyme with its native molecular mass of 232kDa and subunit size of 58kDa, whereas PII was a monomeric enzyme with a molecular mass of 30-34kDa. Both phosphatases utilized GGPP as the preferred substrate over farnesyl and geranyl diphosphates. The apparent K(m) values for GGPP of PI and PII appeared to be 0.2 and 0.1mM, respectively. Both activities were Mg(2+) independent and exhibited slightly acidic pH optima, 6.0-6.5 for PI and 6.5-7.0 for PII. The catalytic activities of PII was strongly inhibited by 1.0mM of Zn(2+), Mn(2+) and Co(2+), whereas that of PI was not affected. Both enzyme preparations were very stable upon storage at -20 degrees C for 45 days without significant loss of phosphatase activity. The presence of GGPP phosphatase enzymes in C. stellatopilosus is consistent with its putative involvement in the biosynthetic pathway of plaunotol although whether PI or PII is the actual enzyme involved in the pathway remains to be clarified.


Asunto(s)
Croton/enzimología , Monoéster Fosfórico Hidrolasas/aislamiento & purificación , Hojas de la Planta/enzimología , Catálisis , Membrana Celular/enzimología , Cromatografía en Gel , Cromatografía en Capa Delgada , Electroforesis en Gel de Poliacrilamida , Monoéster Fosfórico Hidrolasas/metabolismo , Especificidad por Sustrato
14.
J Nat Prod ; 68(5): 666-73, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15921406

RESUMEN

In the present study morphinan, tetrahydrobenzylisoquinoline, benzo[c]phenanthridine, and phthalideisoquinoline alkaloids were determined qualitatively and quantitatively by HPLC and LC-MS analysis in tissues of the Tasmanian Papaver somniferum L. elite cultivar C048-6-14-64. The data were compared with the results from the low-morphine cultivar "Marianne". In the elite cultivar, 91.2% of the latex alkaloids consist of the three pharmaceutically most valuable alkaloids: morphine, codeine, and thebaine. In the root system, the major alkaloids are sanguinarine/10-hydroxysanguinarine and dihydrosanguinarine/10-hydroxydihydrosanguinarine. In the stems and leaves of C048-6-14-64, the same alkaloids were measured as in the latex. In the stems, a gradient in relative total alkaloid content from the top downward toward the roots was observed. The concentration of morphine was decreasing toward the roots, whereas an increasing gradient from the upper to the lower stem parts was detected for codeine. The relative total alkaloid concentration in leaves remained constant; no gradient was observed. The cultivar "Marianne" displayed a shifted pattern of alkaloid accumulation and reduced levels of total alkaloid. In the condiment cultivar, 80.5% of the alkaloids of the latex consisted of the two phthalideisoquinoline alkaloids narcotoline and noscapine. Only 18.8% of the relative total alkaloid content were morphinan alkaloids. In contrast to the narcotic cultivar, in which the benzo[c]phenanthridines in roots dominated over the morphinan and tetrahydrobenzylisoquinoline alkaloids, the concentration of benzo[c]phenanthridines in "Marianne" was similar to that of morphinan and tetrahydrobenzylisoquinoline alkaloids. These data suggest a differential alkaloid regulation in each cultivar of P. somniferum.


Asunto(s)
Alcaloides/análisis , Alcaloides/química , Papaver/química , Plantas Medicinales/química , Australia , Codeína/análisis , Estructura Molecular , Morfinanos/análisis , Narcóticos/química
15.
Proc Natl Acad Sci U S A ; 101(38): 13957-62, 2004 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-15353584

RESUMEN

The opium poppy, Papaver somniferum, is one of mankind's oldest medicinal plants. Opium poppy today is the commercial source of the narcotic analgesics morphine and codeine. Along with these two morphinans, opium poppy produces approximately eighty alkaloids belonging to various tetrahydrobenzylisoquinoline-derived classes. It has been known for over a century that morphinan alkaloids accumulate in the latex of opium poppy. With identification of many of the enzymes of alkaloid biosynthesis in this plant, biochemical data suggested involvement of multiple cell types in alkaloid biosynthesis in poppy. Herein the immunolocalization of five enzymes of alkaloid formation in opium poppy is reported: (R,S)-3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase central to the biosynthesis of tetrahydroisoquinoline-derived alkaloids, the berberine bridge enzyme of the sanguinarine pathway, (R,S)-reticuline 7-O-methyltransferase specific to laudanosine formation, and salutaridinol 7-O-acetyltransferase and codeinone reductase, which lead to morphine. In capsule and stem, both O-methyltransferases and the O-acetyltransferase are found predominantly in parenchyma cells within the vascular bundle, and codeinone reductase is localized to laticifers, the site of morphinan alkaloid accumulation. In developing root tip, both O-methyltransferases and the O-acetyltransferase are found in the pericycle of the stele, and the berberine bridge enzyme is localized to parenchyma cells of the root cortex. Laticifers are not found in developing root tip, and, likewise, codeinone reductase was not detected. These results provide cell-specific localization that gives a coherent picture of the spatial distribution of alkaloid biosynthesis in opium poppy.


Asunto(s)
Morfina/metabolismo , Papaver/metabolismo , Alcaloides/metabolismo , Enzimas/metabolismo , Alemania , Hibridación in Situ , Opio/metabolismo , Papaver/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo
16.
Plant Physiol ; 134(4): 1401-13, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15064370

RESUMEN

Isoprenoid biosynthesis in plant plastids occurs via the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway. We used tobacco rattle virus (TRV) to posttranscriptionally silence the expression of the last two enzymes of this pathway, the IspG-encoded (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (HDS) and the IspH-encoded isopentenyl/dimethylallyl diphosphate synthase (IDDS), as well as isopentenyl/dimethylallyl diphosphate isomerase (IDI), the enzyme that interconverts IPP and DMAPP. TRV-IspG and TRV-IspH infected Nicotiana benthamiana plants had albino leaves that contained less than 4% of the chlorophyll and carotenoid pigments of control leaves. We applied [(13)C]DXP and [(14)C]DXP to silenced leaves and found that 2-C-methyl-d-erythritol 2,4-cyclodiphosphate accumulated in plants blocked at HDS while DXP, (E)-4-hydroxy-3-methylbut-2-enyl phosphate and (E)-2-methylbut-2-ene-1,4-diol accumulated in IDDS-blocked plants. Albino leaves from IspG- and IspH-silenced plants displayed a disorganized palisade mesophyll, reduced cuticle, fewer plastids, and disrupted thylakoid membranes. These findings demonstrate the participation of HDS and IDDS in the DXP pathway in plants, and support the view that plastid isoprenoid biosynthesis is metabolically and physically segregated from the mevalonate pathway. IDI-silenced plants had mottled white-pale green leaves with disrupted tissue and plastid structure, and showed an 80% reduction in pigments compared to controls. IPP pyrophosphatase activity was higher in chloroplasts isolated from IDI-silenced plants than in control plant chloroplasts. We suggest that a low level of isoprenoid biosynthesis via the DXP pathway can occur without IDI but that this enzyme is required for full function of the DXP pathway.


Asunto(s)
Transferasas Alquil y Aril/genética , Isomerasas de Doble Vínculo Carbono-Carbono/genética , Silenciador del Gen/fisiología , Nicotiana/genética , Pentosafosfatos/metabolismo , Terpenos/metabolismo , Transferasas Alquil y Aril/metabolismo , Isótopos de Carbono , Radioisótopos de Carbono , Isomerasas de Doble Vínculo Carbono-Carbono/metabolismo , Carotenoides/análisis , Clorofila/análisis , Cloroplastos/genética , Cloroplastos/metabolismo , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Pentosafosfatos/química , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Terpenos/química , Nicotiana/enzimología , Nicotiana/virología , Virus del Mosaico del Tabaco/crecimiento & desarrollo
17.
Plant J ; 36(6): 808-19, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14675446

RESUMEN

S-Adenosyl-L-methionine:(R,S)-reticuline 7-O-methyltransferase converts reticuline to laudanine in tetrahydrobenzylisoquinoline biosynthesis in the opium poppy Papaver somniferum. This enzyme activity has not yet been detected in plants. A proteomic analysis of P. somniferum latex identified a gel spot that contained a protein(s) whose partial amino acid sequences were homologous to those of plant O-methyltransferases. cDNA was amplified from P. somniferum RNA by reverse transcription PCR using primers based on these internal amino acid sequences. Recombinant protein was then expressed in Spodoptera frugiperda Sf9 cells in a baculovirus expression vector. Steady-state kinetic measurements with one heterologously expressed enzyme and mass spectrometric analysis of the enzymatic products suggested that this unusual enzyme is capable of carrying through sequential O-methylations on the isoquinoline and on the benzyl moiety of several substrates. The tetrahydrobenzylisoquinolines (R)-reticuline (4.2 sec(-1) mm(-1)), (S)-reticuline (4.5 sec(-1) mm(-1)), (R)-protosinomenine (1.7 sec(-1) mm(-1)), and (R,S)-isoorientaline (1.4 sec(-1) mm(-1)) as well as guaiacol (5.9 sec(-1) mm(-1)) and isovanillic acid (1.2 sec(-1) mm(-1)) are O-methylated by the enzyme with the ratio kcat/K m shown in parentheses. A P. somniferum cDNA encoding (R,S)-norcoclaurine 6-O-methyltransferase was similarly isolated and characterized. This enzyme was less permissive, methylating only (R,S)-norcoclaurine (7.4 sec(-1) mm(-1)), (R)-norprotosinomenine (4.1 sec(-1) mm(-1)), (S)-norprotosinomenine (4.0 sec(-1) mm(-1)) and (R,S)-isoorientaline (1.0 sec(-1) mm(-1)). A phylogenetic comparison of the amino acid sequences of these O-methyltransferases to those from 28 other plant species suggests that these enzymes group more closely to isoquinoline biosynthetic O-methyltransferases from Coptis japonica than to those from Thalictrum tuberosum that can O-methylate both alkaloid and phenylpropanoid substrates.


Asunto(s)
Alcaloides/biosíntesis , Metiltransferasas/genética , Papaver/genética , Secuencia de Aminoácidos , Clonación Molecular , Secuencia Conservada , ADN Complementario/genética , Regulación Enzimológica de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Metiltransferasas/química , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Opio , Papaver/enzimología , Fragmentos de Péptidos/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
18.
Phytochemistry ; 62(3): 313-23, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12620343

RESUMEN

A cDNA encoding a stilbene synthase, RtSTS, was isolated from the rhizomes of Tatar rhubarb, Rheum tataricum L. (Polygonaceae), a medicinal plant containing stilbenes and other polyketides. Recombinant RtSTS was expressed in E. coli and assayed with acetyl-coenzyme A (CoA), n-butyryl-CoA, isovaleryl-CoA, n-hexanoyl-CoA, cinnamoyl-CoA and p-coumaroyl-CoA as primers of polyketide synthesis. RtSTS synthesized resveratrol and a trace amount of naringenin chalcone from p-coumaroyl-CoA, supporting the enzyme's identification as a resveratrol-type stilbene synthase (EC 2.3.1.95). Bis-noryangonin and p-coumaroyl triacetic acid lactone (CTAL)-type pyrones were observed in minor amounts in the reaction with p-coumaroyl-CoA and as major products with cinnamoyl CoA. As well, such pyrones, and not aromatic polyketides, were identified as the only products in assays with aliphatic and benzoyl CoA esters. Acetonyl-4-hydroxy-2-pyrone, a pyrone synthesized from acetyl-CoA, was identified as a new product of a stilbene synthase. Using Northern blot analysis, RtSTS transcript was found to be highly expressed in R. tataricum rhizomes, with low transcript levels also present in young leaves. This expression pattern correlated with the occurrence of resveratrol, which was detected in higher amounts in R. tataricum rhizomes compared with leaves and petioles using HPLC. Few stilbene synthases have been found in plants, and the identification of RtSTS provides additional sequence and catalytic information with which to study the evolution of plant polyketide synthases.


Asunto(s)
Aciltransferasas/metabolismo , Hidrocarburos Aromáticos/metabolismo , Pironas/metabolismo , Rheum/metabolismo , Estilbenos/metabolismo , Acilcoenzima A/metabolismo , Aciltransferasas/genética , Secuencia de Aminoácidos , Northern Blotting , Cromatografía Líquida de Alta Presión/métodos , Cromatografía en Capa Delgada , ADN Complementario/genética , Hidrocarburos Aromáticos/química , Espectrometría de Masas , Datos de Secuencia Molecular , Filogenia , Pironas/química , Proteínas Recombinantes/metabolismo , Rheum/enzimología , Rheum/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
19.
Planta ; 216(1): 64-71, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12430015

RESUMEN

Three cDNAs encoding very similar but unique isoforms of chalcone synthase (EC 2.3.1.74) were isolated from a cDNA library prepared from RNA from root tissue of the Thai medicinal plant Cassia alata L. (ringworm bush, Leguminosae). Gene transcript for these three type-III polyketide synthases was found to accumulate predominantly in roots. The heterologously expressed enzymes accepted acetyl-, n-butyryl-, isovaleryl-, n-hexanoyl-, benzoyl-, cinnamoyl-, and p-coumaroyl-CoA as starter molecules and together with the co-substrate malonyl-CoA, formed multiple products. With the exception of the assay in which acetyl-CoA was used as the starter molecule, all substrates yielded a phloroglucinol derivative resulting from three sequential condensations of acetate units derived from three malonyl-CoA decarboxylations. Every substrate tested also produced two pyrone derivatives, one resulting from two acetate unit condensations (a bis-noryangonin-type pyrone derailment product) and one resulting from three acetate unit condensations (a 4-coumaroyltriacetic acid lactone-type pyrone derailment). C. alata accumulates the flavonoids quercetin, naringenin and kaempferol in roots, suggesting that the in planta function of these enzymes is the biosynthesis of root flavonoids.


Asunto(s)
Aciltransferasas/genética , Cassia/genética , Flavanonas , Quempferoles , Raíces de Plantas/enzimología , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Cassia/enzimología , ADN Complementario/química , ADN Complementario/genética , Flavonoides/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Raíces de Plantas/genética , Plantas Medicinales , Quercetina/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA