Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
mBio ; 14(1): e0247822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36507833

RESUMEN

The purine-derived signaling molecules c-di-AMP and (p)ppGpp control mecA/PBP2a-mediated ß-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) raise the possibility that purine availability can control antibiotic susceptibility. Consistent with this, exogenous guanosine and xanthosine, which are fluxed through the GTP branch of purine biosynthesis, were shown to significantly reduce MRSA ß-lactam resistance. In contrast, adenosine (fluxed to ATP) significantly increased oxacillin resistance, whereas inosine (which can be fluxed to ATP and GTP via hypoxanthine) only marginally increased oxacillin susceptibility. Furthermore, mutations that interfere with de novo purine synthesis (pur operon), transport (NupG, PbuG, PbuX) and the salvage pathway (DeoD2, Hpt) increased ß-lactam resistance in MRSA strain JE2. Increased resistance of a nupG mutant was not significantly reversed by guanosine, indicating that NupG is required for guanosine transport, which is required to reduce ß-lactam resistance. Suppressor mutants resistant to oxacillin/guanosine combinations contained several purine salvage pathway mutations, including nupG and hpt. Guanosine significantly increased cell size and reduced levels of c-di-AMP, while inactivation of GdpP, the c-di-AMP phosphodiesterase negated the impact of guanosine on ß-lactam susceptibility. PBP2a expression was unaffected in nupG or deoD2 mutants, suggesting that guanosine-induced ß-lactam susceptibility may result from dysfunctional c-di-AMP-dependent osmoregulation. These data reveal the therapeutic potential of purine nucleosides, as ß-lactam adjuvants that interfere with the normal activation of c-di-AMP are required for high-level ß-lactam resistance in MRSA. IMPORTANCE The clinical burden of infections caused by antimicrobial resistant (AMR) pathogens is a leading threat to public health. Maintaining the effectiveness of existing antimicrobial drugs or finding ways to reintroduce drugs to which resistance is widespread is an important part of efforts to address the AMR crisis. Predominantly, the safest and most effective class of antibiotics are the ß-lactams, which are no longer effective against methicillin-resistant Staphylococcus aureus (MRSA). Here, we report that the purine nucleosides guanosine and xanthosine have potent activity as adjuvants that can resensitize MRSA to oxacillin and other ß-lactam antibiotics. Mechanistically, exposure of MRSA to these nucleosides significantly reduced the levels of the cyclic dinucleotide c-di-AMP, which is required for ß-lactam resistance. Drugs derived from nucleotides are widely used in the treatment of cancer and viral infections highlighting the clinical potential of using purine nucleosides to restore or enhance the therapeutic effectiveness of ß-lactams against MRSA and potentially other AMR pathogens.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Nucleósidos de Purina/metabolismo , Nucleósidos de Purina/farmacología , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Oxacilina/farmacología , beta-Lactamas/farmacología , Monobactamas/metabolismo , Monobactamas/farmacología , Guanosina/metabolismo , Guanosina/farmacología , Adenosina Trifosfato/metabolismo , Guanosina Trifosfato/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Resistencia betalactámica/genética
2.
Mol Microbiol ; 113(6): 1085-1100, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31997474

RESUMEN

A Staphylococcus aureus strain deleted for the c-di-AMP cyclase gene dacA is unable to survive in rich medium unless it acquires compensatory mutations. Previously identified mutations were in opuD, encoding the main glycine-betaine transporter, and alsT, encoding a predicted amino acid transporter. Here, we show that inactivation of OpuD restores the cell size of a dacA mutant to near wild-type (WT) size, while inactivation of AlsT does not. AlsT was identified as an efficient glutamine transporter, indicating that preventing glutamine uptake in rich medium rescues the growth of the S. aureus dacA mutant. In addition, GltS was identified as a glutamate transporter. By performing growth curves with WT, alsT and gltS mutant strains in defined medium supplemented with ammonium, glutamine or glutamate, we revealed that ammonium and glutamine, but not glutamate promote the growth of S. aureus. This suggests that besides ammonium also glutamine can serve as a nitrogen source under these conditions. Ammonium and uptake of glutamine via AlsT and hence likely a higher intracellular glutamine concentration inhibited c-di-AMP production, while glutamate uptake had no effect. These findings provide, besides the previously reported link between potassium and osmolyte uptake, a connection between nitrogen metabolism and c-di-AMP signalling in S. aureus.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Proteínas Portadoras/metabolismo , AMP Cíclico/metabolismo , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Compuestos de Amonio/metabolismo , Metabolismo Energético/genética , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Staphylococcus aureus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA