RESUMEN
The present study evaluated the protective effect and the regulatory mechanism of taurine on growth inhibition and intestinal damage induced by glycinin in juvenile Rhynchocypris lagowskii Dybowski. The control diets had no glycinin and taurine, the glycinin diets contained only 80 g/kg glycinin, and the glycinin + taurine diets contained 80 g/kg glycinin+10 g/kg taurine. Juvenile Rhynchocypris lagowskii Dybowski (4.65 ± 0.03 g/tail) were respectively fed with these 3 diets for 8 weeks. The results showed that glycinin significantly decreased the final body weight, weight gain rate, specific growth rate, protein efficiency rate, feed efficiency rate and feeding rate of fish compared with the control group (P < 0.05). While taurine supplementation improved the growth performance and feed efficiency, but final body weight, weight gain rate, specific growth rate of the glycinin + taurine group were still significantly lower than the control group (P < 0.05). Compared with the glycinin group, taurine supplementation significantly increased whole-body and muscle crude protein content, and hepatopancreas and intestinal protease activities (P < 0.05). Distal intestinal villous dysplasia and mucosal damage, and increased intestinal mucosal permeability were observed in the glycinin group, while taurine supplementation alleviated these adverse effects. Usefully, taurine supplementation could also partially restore the impaired immune function and antioxidant capacity of fish fed glycinin diets. Compared with the glycinin group, taurine supplementation down-regulated pro-inflammatory cytokines TNF-α and IL-1ß mRNA levels, and up-regulated anti-inflammatory cytokines IL-10 and TGF-ß mRNA levels. Furthermore, taurine partially reversed the reduction of antioxidant genes Nrf2ãHO-1, CAT and GPx mRNA levels in distal intestine induced by glycinin. Concluded, 80 g/kg glycinin led to intestinal damage, digestive dysfunction and increased intestinal mucosal permeability in juvenile Rhynchocypris lagowskii Dybowski, and these adverse effects were ultimately manifested in growth inhibition. But taurine supplementation could partially mitigate the negative effects induced by glycinin.
Asunto(s)
Interleucina-10 , Factor 2 Relacionado con NF-E2 , Alimentación Animal/análisis , Animales , Antiinflamatorios , Antioxidantes/metabolismo , Peso Corporal , Dieta/veterinaria , Suplementos Dietéticos/análisis , Factor 2 Relacionado con NF-E2/metabolismo , Péptido Hidrolasas , ARN Mensajero/genética , Taurina/farmacología , Factor de Crecimiento Transformador beta , Factor de Necrosis Tumoral alfa , Aumento de PesoRESUMEN
OBJECTIVE: To observe the influence of different courses of electroacupuncture (EA) intervention on recognition memory and the proliferation and differentiation of hippocampal neural stem cells in mice with radiation-induced brain injury, so as to explore its mechanisms underlying improving radiation-induced brain injury. METHODS: Se-venty 30-day old C57BL/6J mice were randomly divided into control, model and EA groups, and the latter two groups were further divided into 1 week (W), 2 W and 3 W subgroups (n=10 in the control group and each subgroup). The ra-diation-induced brain injury model was established by radiating the mouse' left head at a dose of 8 Gy for 10 min by using a radiation linear accelerator. EA (1.5 V, 2 Hz/10 Hz) was applied to "Baihui" (GV20), "Fengfu" (GV14) and bilateral "Shenshu" (BL23) for 30 min, once daily for 1, 2 and 3 weeks, respectively. The learning-cognition memory ability was detected by using novel object recognition test in an open test box to record the time for exploring a novel object (TN) and a familiar object and to calculate the recognition index (RI). The neural stem cells' proliferation and differentiation in the hippocampus tissues were evaluated by counting the number of bromodeoxyuridine (BrdU)-labeled cells, neuronal nuclei (NeuN)/BrdU-positive cells and BrdU/glia fibrillary acidic protein (GFAP)-positive cells under microscope after immunofluorescence stain. RESULTS: After modeling, the TN at 90 min and 24 h and RI of the model subgroup 3 W at 90 min and RI of the model subgroup 1, 2 and 3 W at 24 h were significantly decreased in comparison with those of the control group (P<0.01, P<0.05). Moreover, the number of BrdU-positive cells in the model subgroup 1 W and 2 W, the BrdU/NeuN double-labeled cells in the 3 model subgroups and BrdU/GFAP double-labeled cells in the model subgroup 1 W and 3 W were significantly decreased (P<0.01, P<0.05). Following EA interventions, the TN in the 3 EA subgroups at both 90 min and 24 h, and RI of EA subgroup 3 W at 90 min and EA subgroup 2 W and 3 W at 24 h were considerably increased compared with those of the corresponding 3 model subgroups (P<0.05, P<0.01). The numbers of BrdU-positive cells as well as BrdU/NeuN and BrdU/GFAP double-labeled cells were significantly increased in the 3 EA subgroups (P<0.05, P<0.01, P<0.001). CONCLUSION: EA of GV20, GV14 and BL23 can improve the recognition memory ability of mice with radiation-induced brain injury, which may be related to its effect in promoting the proliferation and differentiation of stem cells in the hippocampus.
Asunto(s)
Lesiones Encefálicas , Electroacupuntura , Células-Madre Neurales , Animales , Diferenciación Celular , Proliferación Celular , Hipocampo , Ratones , Ratones Endogámicos C57BLRESUMEN
Optical communications and computing require on-chip nonreciprocal light propagation to isolate and stabilize different chip-scale optical components. We have designed and fabricated a metallic-silicon waveguide system in which the optical potential is modulated along the length of the waveguide such that nonreciprocal light propagation is obtained on a silicon photonic chip. Nonreciprocal light transport and one-way photonic mode conversion are demonstrated at the wavelength of 1.55 micrometers in both simulations and experiments. Our system is compatible with conventional complementary metal-oxide-semiconductor processing, providing a way to chip-scale optical isolators for optical communications and computing.
RESUMEN
High temperature has already become a noticeable environmental factor for crop production, while plant pollen was the most sensitive organ to high temperature stress. In this paper, the cytological, physiological, and molecular biological studies on the high temperature stress on crop pollen were reviewed, aimed to provide ideas for maintaining high productive ability of crops under high temperature stress. The cytological effects of high temperature on crop pollen included the changes of arrangement patterns of rough endoplasmic reticulum in tapetum cells, the irregularity of vascular bundle sheath cells in connective tissue, and the reduction of vesicle production by dictyosomes of pollen tube, etc.; physiological effects involved the incapacity of timely recovery of Ca2+ homeostasis, the changes of growth regulators contents, and the slowing down of carbohydrate metabolism, etc.; and molecular biological effects manifested in the insufficient induction of heat shock proteins and the inhibition of other functional genes for pollen development, etc.