Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Rev. Nutr. (Online) ; 36: e220181, 2023. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1441037

RESUMEN

ABSTRACT Objective Evaluate the effects of maternal low-protein diet on the oxidative stress in the hypothalamus of 60-day-old rats. Methods Male Wistar rats were divided into two experimental groups according to the mother's diet during pregnancy and lactation; control group (NP:17% casein n=6) and a malnourished group (LP:8% casein n=6). At 60 days of life, the rats were sacrificed for the collection of the hypothalamus for further biochemical analysis. Results Our results showed an increase in oxidative stress in malnourished group, observed through an increase in carbonyl content (p=0.0357), a reduction in the activity of the glutathione-S-transferase enzyme (p=0.0257), and a reduction in the non-enzymatic antioxidant capacity evidenced by the decrease in the ratio reduced glutathione/oxidized glutathione (p=0.0406) and total thiol levels (p=0.0166). Conclusion A low-protein diet during pregnancy and lactation is closely associated with increased oxidative stress and reduced antioxidant capacity in the hypothalamus of sixty-day-old rats.


RESUMO Objetivo Avaliar os efeitos da restrição proteica materna sobre o estresse oxidativo no hipotálamo de ratos de 60 dias de idade. Métodos Ratos Wistar machos foram divididos em dois grupos experimentais de acordo com a dieta da mãe durante a gestação e lactação: grupo controle (NP: 17% caseína n=6) e grupo desnutrido (LP: 8% caseína n=6). Aos 60 dias de vida, os ratos foram sacrificados para coleta do hipotálamo para posterior análise bioquímica. Resultados Os resultados demonstraram aumento do estresse oxidativo no grupo desnutrido, observado através do aumento do conteúdo de cabonilas (p=0,0357) e redução da atividade da enzima glutationa-S-transferase (p=0,0257) e da capacidade antioxidante não enzimática, evidenciada pela queda da razão glutationa reduzida/glutationa oxidada (p=0,0406) e dos níveis de tióis totais (p=0,0166). Conclusão Uma dieta com baixo teor de proteínas durante a gestação e lactação está intimamente associada ao aumento do estresse oxidativo e à redução da capacidade antioxidante no hipotálamo de ratos de 60 dias de vida.


Asunto(s)
Animales , Masculino , Femenino , Ratas , Dieta con Restricción de Proteínas/efectos adversos , Hipotálamo , Lactancia , Embarazo
2.
Front Psychol ; 13: 987203, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36524160

RESUMEN

Various functions in the central nervous system, such as growth, development, and cognition can be influenced by vitamins and minerals, which are capable of helping to maintain brain health and function throughout life. Cognition is understood as the aspects related to knowledge, learning, and understanding, as well as the ability to develop these functions. A possible association between low levels of vit D and deficit in the performance of cognitive functions in healthy humans or with some pathological condition is discussed. Because of this, the present systematic review analyzed only randomized clinical trials carried out in healthy non-athlete adults about intellectual and/or mental processes involving cognitive functions to identify whether these individuals with different levels of vit D are capable of interfering with the performance of the cognitive function. To do so, we adopted the PRISMA method criteria and registered it in the PROSPERO database. The search was performed in PubMed (MEDLINE), PsycINFO, Science Direct, Scopus, and Web of Science databases, 2,167 records were identified. The 5 most frequent cognitive domains in the selected studies were: processing speed, attention, verbal learning/memory, executive function, and general cognitive functions. We found that there are positive changes in the following domains: verbal memory and verbal working memory, learning memory, attention, executive function, and also cognitive function in general. We highlight the following suggestions for improvements that vitamin D supplementation may promote in the cognitive domains of healthy adults: a) low doses between 400 and 600 IU/d seem to be more effective when compared to doses between 2,400 and 5,000 IU/d and b) food fortification and enrichment with vit D, need further studies, as they seem to be more or as effective as synthetic supplementation. We evident that there is a need for trials that evaluate the control of vit D levels for healthy adult individuals is important, as they have the potential to minimize health problems, especially those involved in the reduction of cognitive abilities. Thus, the development of more clinical trials to obtain satisfactory answers on this topic needs to be encouraged. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42021262413.

3.
Eur J Pharmacol ; 881: 173200, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32445706

RESUMEN

Nutritional imbalance in early life may disrupt the hypothalamic control of energy homeostasis and increase the risk of metabolic disease. The hypothalamic serotonin (5-hydroxytryptamine; 5-HT) system based in the hypothalamus plays an important role in the homeostatic control of energy balance, however the mechanisms underlying the regulation of energy metabolism by 5-HT remain poorly described. Several crucial mitochondrial functions are altered by mitochondrial stress. Adaptations to this stress include changes in mitochondrial multiplication (i.e, mitochondrial biogenesis). Due to the scarcity of evidence regarding the effects of serotonin reuptake inhibitors (SSRI) such as fluoxetine (FLX) on mitochondrial function, we sought to investigate the potential contribution of FLX on changes in mitochondrial function and biogenesis occurring in overfed rats. Using a neonatal overfeeding model, male Wistar rats were divided into 4 groups between 39 and 59 days of age based on nutrition and FLX administration: normofed + vehicle (NV), normofed + FLX (NF), overfed + vehicle (OV) and overfed + FLX (OF). We found that neonatal overfeeding impaired mitochondrial respiration and increased oxidative stress biomarkers in the hypothalamus. FLX administration in overfed rats reestablished mitochondrial oxygen consumption, increased mitochondrial uncoupling protein 2 (Ucp2) expression, reduced total reactive species (RS) production and oxidative stress biomarkers, and up-regulated mitochondrial biogenesis-related genes. Taken together our results suggest that FLX administration in overfed rats improves mitochondrial respiratory chain activity and oxidative balance and increases the transcription of genes employed in mitochondrial biogenesis favoring mitochondrial energy efficiency in response to early nutritional imbalance.


Asunto(s)
Fármacos Antiobesidad/farmacología , Metabolismo Energético/efectos de los fármacos , Fluoxetina/farmacología , Hipotálamo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Biogénesis de Organelos , Hipernutrición/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Factores de Edad , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Animales Lactantes , Hipotálamo/metabolismo , Hipotálamo/patología , Hipotálamo/fisiopatología , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Estado Nutricional , Hipernutrición/metabolismo , Hipernutrición/patología , Hipernutrición/fisiopatología , Oxidación-Reducción , Consumo de Oxígeno , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
4.
Int J Dev Neurosci ; 80(3): 209-219, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32083748

RESUMEN

Early life stress (ELS) has been associated with developmental impairments. Early weaning (EW) is a postnatal stress model consisting of interruption of lactation and maternal care. The 5HT-system has been associated with neurobehavioral modulations promoted by ELS. Thus, the present work aims to investigate the effects of early weaning on feeding behavior and serotonergic system of juvenile male rats. For this, rats were submitted to early (PND15) or natural (PND30) weaning and had the body weight, food intake in circadian phases, and food intake in response to fenfluramine assessed. mRNA expression of serotoninergic receptors (5HT1A and 5HT2C) and transporter (SERT) was assessed in the hypothalamus and brainstem, as well as NPY and POMC mRNA expression in hypothalamus. The results show that early weaning promoted changes in the percentage of weight gain during lactation period and increase in body weight at PND40. It was also observed that EW promoted increase and decrease in food intake in light and dark phase, respectively, and leads to a decreased action of fenfluramine on inhibition of food intake. In addition, early weaning promoted increased NPY and SERT mRNA expression in the hypothalamus and 5HT2C in the brainstem. Together, the data indicate that the stress caused by early weaning impairs the eating behavior of juvenile male rats through hypofunction of the 5HT-system.


Asunto(s)
Tronco Encefálico/metabolismo , Conducta Alimentaria/fisiología , Hipotálamo/metabolismo , Receptores de Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Destete , Animales , Peso Corporal/fisiología , Ritmo Circadiano/fisiología , Ingestión de Alimentos/fisiología , Masculino , Ratas , Ratas Wistar
5.
Behav Brain Res ; 383: 112531, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32014554

RESUMEN

Early weaning is associated with disruption of eating behavior. However, little is known about the mechanisms behind it. 5HT and DA systems are key regulators of homeostatic and hedonic eating behaviors, respectively. Thus, this study aims to evaluate the effects of early weaning on feeding behavior and 5HT and DA systems. For this, rats were submitted to regular (PND30) or early weaning (PND15) and between PND250 and PND300 were evaluated food intake of standard diet in response to 4 h food deprivation, during the 24 h period and per phase of the circadian cycle, in addition to the palatable food intake. Additionally, body mass and mRNA expression of 5HT1B, 5HT2C, SERT, DRD1 and DRD2 were evaluated in the hypothalamus and brainstem. The results demonstrate that early weaning promoted an increase in standard food intake in response to a 4 h food deprivation in the 24 h period and in the dark phase of the circadian cycle, in addition to an increased palatable food intake. No differences in body mass between regular or early weaning were observed. In the hypothalamus, increased mRNA expression of SERT and DRD1 was observed, but decreased 5HT1B mRNA expression. In the brainstem, the expression of 5HT1B, SERT, 5HT2C, DRD1 and DRD2 was increased in early weaned rats. In a nutshell, the stress promoted by early weaning has programmed the animals to be hyperphagic and to increase their palatable food intake, which was associated with modulation of 5HT and DA systems.


Asunto(s)
Conducta Alimentaria/fisiología , Hiperfagia/fisiopatología , Hipotálamo/metabolismo , ARN Mensajero/metabolismo , Destete , Animales , Peso Corporal , Dopamina/metabolismo , Hiperfagia/metabolismo , Masculino , Ratas , Receptor de Serotonina 5-HT1B/genética , Receptor de Serotonina 5-HT1B/metabolismo , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
6.
Behav Processes ; 170: 103981, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31682870

RESUMEN

Convergent evidence in literature shows that rapid disruption of maternal care and breastfeeding due to an early weaning protocol changes the development of several neurobehavioral patterns in rodents, including the circadian pattern of feeding. The serotoninergic system has been associated with the control of feeding patterns. Therefore, we aim to evaluate the patterns of feeding, the mRNA expression of 5 H T-1b, 5 H T-2c, and SERT on the hypothalamus, brainstem, and the body weight of female juvenile Wistar rats, submitted to early (PND15) or regular (PND30) weaning. The results demonstrate that early weaning promotes an increase in food intake in a 24 -h period, in the dark phase of the circadian cycle and in the four-hour time intervals at the beginning of the dark and light phases. Also, early weaning decreases the mRNA expression of 5 H T-1b, 5 H T-2c, and SERT on the hypothalamus, but increases it on the brainstem. Additionally, early weaning promotes an increase in body weight. Therefore, the present data demonstrate that early weaning changes the patterns of feeding in juvenile female rats and suggests that this behavioral modification is due to the modulations promoted in the 5 H T-system.


Asunto(s)
Conducta Alimentaria/fisiología , Serotonina/fisiología , Destete , Animales , Peso Corporal/genética , Encéfalo/anatomía & histología , Tronco Encefálico/metabolismo , Ritmo Circadiano , Ingestión de Alimentos/fisiología , Ingestión de Energía/genética , Femenino , Hipotálamo/metabolismo , Conducta Materna , Tamaño de los Órganos/genética , ARN Mensajero/biosíntesis , Proteínas de Unión al ARN/genética , Ratas , Ratas Wistar
7.
Behav Brain Res ; 356: 62-70, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30099029

RESUMEN

Serotonin (5-HT) plays a regulatory role in coordinating the neural circuits regulating energy balance, with differences in both 5-HT availability at the synapse and the activity of 5-HT receptors mediating anorectic (via POMC/CART activation) and orexigenic (via NPY/AgRP activation) responses. In conditions of overweight and obesity the control of energy balance is clearly deregulated, and serotonergic modulation appears to make a significant contribution to weight gain. Fluoxetine (FLX), a selective serotonin reuptake inhibitor (SSRI) that increases 5-HT availability in the synaptic cleft may thus have potential effects on energy balance. Our aim was to use an overfeeding model to investigate the effects of chronic FLX treatment on energy balance-related parameters regulated by hypothalamic neuropeptides. Nursing male Wistar rats were assigned to normofed (9 pups/dam) or overfed (3 pups/dam) groups beginning at 3 days of age and continuing until 21 days of age, when commercial chow and water were made available ad libitum until experimental treatments were begun. From 39 through 59 days of age groups were divided according to pharmacological treatment: 1) NV group, normofed + vehicle solution (NaCl 0.9%, 10 ml/kg b.w.), 2) NF group, normofed + FLX (10 mg/kg b.w., in vehicle solution, 10 ml/kg b.w.) 3), OV, overfed + vehicle solution and 4) OF, overfed + FLX. At 60 days of age, body weight, white and brown adipose tissue content, and food intake were determined, and serum biochemical parameters and hypothalamic neuropeptide gene expression were measured. Results showed that FLX induced reductions in several murinometric indices, improvement of adipose profile, hypophagic behavior, reduction in serum parameters, and positive modulation of hypophagia-related genes. These data suggest that the beneficial effects of FLX-treatment on overfeeding-induced physical and behavioral effects in rats was due to hypothalamic alterations that led to improvement in energy balance in animals with a compromised metabolism.


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Fluoxetina/farmacología , Obesidad/tratamiento farmacológico , Animales , Conducta Animal/efectos de los fármacos , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Masculino , Neuropéptido Y/metabolismo , Neuropéptidos/metabolismo , Obesidad/metabolismo , Ratas , Ratas Wistar , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
8.
Eur J Neurosci ; 2018 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-29802653

RESUMEN

The serotonin reuptake is mainly regulated by the serotonin transporters (SERTs), which are abundantly found in the raphe nuclei, located in the brainstem. Previous studies have shown that dysfunction in the SERT has been associated with several disorders, including depression and cardiovascular diseases. In this manuscript, we aimed to investigate how gender and the treatment with a serotonin selective reuptake inhibitor (SSRI) could affect mitochondrial bioenergetics and oxidative stress in the brainstem of male and female rats. Fluoxetine, our chosen SSRI, was used during the neonatal period (i.e., from postnatal Day 1 to postnatal Day 21-PND1 to PND21) in both male and female animals. Thereafter, experiments were conducted in adult rats (60 days old). Our results demonstrate that, during lactation, fluoxetine treatment modulates the mitochondrial bioenergetics in a sex-dependent manner, such as improving male mitochondrial function and female antioxidant capacity.

9.
Cerebellum ; 16(1): 103-117, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27003678

RESUMEN

The cerebellum is vulnerable to malnutrition effects. Notwithstanding, it is able to incorporate higher amount of docosahexaenoic acid (DHA) than the cerebral cortex (Cx) when low n-6/n-3 fatty acid ratio is present in a multideficient diet. Considering importance of DHA for brain redox balance, we hypothesize that this cerebellum feature improves its antioxidant status compared to the Cx. A chronic malnutrition status was induced on dams before mating and kept until weaning or adulthood (offspring). A group nutritionally rehabilitated from weaning was also analyzed. Morphometric parameters, total-superoxide dismutase (t-SOD) and catalase activities, lipoperoxidation (LP), nitric oxide (NO), reduced (GSH) and oxidized (GSSG) glutathione, reactive oxygen species (ROS), and reduced nicotinamide adenine dinucleotide/phosphate levels were assessed. Both ROS and LP levels were increased (∼53 %) in the Cx of malnourished young animals while the opposite was seen in the cerebellum (72 and 20 % of the control, respectively). Consistently, lower (∼35 %) and higher t-SOD (∼153 %) and catalase (CAT) (∼38 %) activities were respectively detected in the Cx and cerebellum compared to the control. In malnourished adult animals, redox balance was maintained in the cerebellum and recovered in the Cx (lower ROS and LP levels and higher GSH/GSSG ratio). NO production was impaired by malnutrition at either age, mainly in the cerebellum. The findings suggest that despite a multinutrient deficiency and a modified structural development, a low dietary n-6/n-3 ratio favors early antioxidant resources in the male cerebellum and indicates an important role of astrocytes in the redox balance recovery of Cx in adulthood.


Asunto(s)
Cerebelo/crecimiento & desarrollo , Dieta con Restricción de Proteínas , Ácidos Grasos Omega-3 , Ácidos Grasos Omega-6/deficiencia , Desnutrición/metabolismo , Estrés Oxidativo/fisiología , Alimentación Animal , Animales , Antioxidantes/metabolismo , Cerebelo/metabolismo , Cerebelo/patología , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Peroxidación de Lípido/fisiología , Masculino , Desnutrición/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal , Distribución Aleatoria , Ratas , Destete
10.
Can J Physiol Pharmacol ; 92(4): 330-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24708216

RESUMEN

The brain, more than any other organ in the body, is vulnerable to oxidative stress damage, owing to its requirement for high levels of oxygenation. This is needed to fulfill its metabolic needs in the face of relatively low levels of protective antioxidants. Recent studies have suggested that oxidative stress is directly involved in the etiology of both eating and anxiety behavior. The aim of this study was to evaluate the effect of fluoxetine-inhibited serotonin reuptake in nursing rat neonates on behavior and on oxidative stress in the hypothalamus and the hippocampus; brain areas responsible for behavior related to food and anxiety, respectively. The results show that increased serotonin levels during a critical period of development do not induce significant differences in food-related behavior (intake and satiety), but do result in a in a significant decrease in anxiety. Measurements of oxidative stress showed a significant reduction of lipid peroxidation in the hippocampus (57%). In the hypothalamus, antioxidant enzymes were unchanged, but in the hippocampus, the activity of catalase and glutathione-S-transferase was increased (80% and 85% respectively). This suggests that protecting neural cells from oxidative stress during brain development contributes to the anxiolytic effects of serotonin.


Asunto(s)
Ansiolíticos/uso terapéutico , Ansiedad/prevención & control , Conducta Animal/efectos de los fármacos , Fluoxetina/uso terapéutico , Hipocampo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Animales , Animales Recién Nacidos , Ansiolíticos/farmacología , Ansiedad/metabolismo , Ansiedad/psicología , Conducta Animal/fisiología , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Fluoxetina/farmacología , Hipocampo/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Ratas , Ratas Wistar , Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
11.
Biochim Biophys Acta ; 1840(6): 1902-12, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24361617

RESUMEN

BACKGROUND: Our previous study demonstrated that essential fatty acid (EFA) dietary restriction over two generations induced midbrain dopaminergic cell loss and oxidative stress in the substantia nigra (SN) but not in the striatum of young rats. In the present study we hypothesized that omega-3 deficiency until adulthood would reduce striatum's resilience, increase nitric oxide (NO) levels and the number of BDNF-expressing neurons, both potential mechanisms involved in SN neurodegeneration. METHODS: Second generation rats were raised from gestation on control or EFA-restricted diets until young or adulthood. Lipoperoxidation, NO content, total superoxide dismutase (t-SOD) and catalase enzymatic activities were assessed in the SN and striatum. The number of tyrosine hydroxylase (TH)- and BDNF-expressing neurons was analyzed in the SN. RESULTS: Increased NO levels were observed in the striatum of both young and adult EFA-deficient animals but not in the SN, despite a similar omega-3 depletion (~65%) in these regions. Increased lipoperoxidation and decreased catalase activity were found in both regions, while lower tSOD activity was observed only in the striatum. Fewer TH- (~40%) and BDNF-positive cells (~20%) were detected at the SN compared to the control. CONCLUSION: The present findings demonstrate a differential effect of omega-3 deficiency on NO production in the rat's nigrostriatal system. Prolonging omega-3 depletion until adulthood impaired striatum's anti-oxidant resources and BDNF distribution in the SN, worsening dopaminergic cell degeneration. GENERAL SIGNIFICANCE: Omega-3 deficiency can reduce the nigrostriatal system's ability to maintain homeostasis under oxidative conditions, which may enhance the risk of Parkinson's disease.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Ácidos Grasos Omega-3/fisiología , Óxido Nítrico/biosíntesis , Enfermedad de Parkinson/etiología , Sustancia Negra/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/análisis , Catalasa/metabolismo , Femenino , Peroxidación de Lípido , Masculino , Estrés Oxidativo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Tirosina 3-Monooxigenasa/análisis
12.
Cell Biochem Funct ; 23(2): 101-7, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15617036

RESUMEN

In a recent publication, we showed the protective effect of glutamine on neutrophil apoptosis induced by acute exercise. The purpose of the present study was to examine the effect of a single bout of intensive exercise on rat neutrophil function and the possible effect of glutamine supplementation. An aqueous solution of glutamine was given by gavage (1 g per kg b.w.), 1 h before the exercise session. The exercise was carried out on a treadmill for 1 h at 85% VO2máx.. Neutrophils were obtained by intraperitoneal lavage with PBS. The following parameters were evaluated: phagocytosis capacity, production of nitric oxide and reactive oxygen metabolites, expression of iNOS, and expression of NADPH-oxidase components (p22phox, p47phox and gp91phox). One hour of exercise at 85% VO2max. induced no change in the phagocytosis capacity and reactive oxygen species production but decreased nitric oxide production. When rats received oral glutamine supplementation, the phagocytosis capacity was significantly increased, the decrease in nitric oxide production induced by exercise was abolished and production of reactive oxygen species was raised. Glutamine supplementation presents a significant effect on neutrophil function including changes induced by exercise.


Asunto(s)
Glutamina/farmacología , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Condicionamiento Físico Animal , Animales , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/biosíntesis , Óxido Nítrico Sintasa de Tipo II , Consumo de Oxígeno , Fagocitosis/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA