Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1618, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388544

RESUMEN

Wet-tissue adhesives have long been attractive materials for realizing complicated biomedical functions. However, the hydration film on wet tissues can generate a boundary, forming hydrogen bonds with the adhesives that weaken adhesive strength. Introducing black phosphorus (BP) is believed to enhance the water absorption capacity of tape-type adhesives and effectively eliminate hydration layers between the tissue and adhesive. This study reports a composite patch integrated with BP nanosheets (CPB) for wet-tissue adhesion. The patch's improved water absorption and mechanical properties ensure its immediate and robust adhesion to wet tissues. Various bioapplications of CPB are demonstrated, such as rapid hemostasis (within ~1-2 seconds), monitoring of physical-activity and prevention of tumour-recurrence, all validated via in vivo studies. Given the good practicability, histocompatibility and biodegradability of CPB, the proposed patches hold significant promise for a wide range of biomedical applications.


Asunto(s)
Adhesivos Tisulares , Agua , Humanos , Agua/química , Fósforo , Adherencias Tisulares , Adhesivos/química , Adhesivos Tisulares/química , Hidrogeles
2.
ACS Nano ; 16(1): 1421-1435, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34962119

RESUMEN

Combinatorial cancer therapies based on nanomedicine have emerged as a promising strategy to achieve potentiated treatment efficiency. Herein, cisplatin (CDDP) prodrug (Pt-CD) and a mitochondria-targeted near-infrared (NIR) photosensitizer IR780 were combined to construct a multifunctional nanomedicine IR780@Pt NPs through a supramolecular self-assembly strategy. Targeted mitochondrial dysfunction of cancer cells was sufficiently induced under NIR laser irradiation through both photothermal and photodynamic effects, inhibiting the overactive mitochondrial energy pathways of cancer cells. The mitochondrial dysfunction significantly attenuated the crosstalk between mitochondria and nucleus via the cellular ATP energy chain, leading to obvious down-regulation of the key proteins of the nucleotide excision repair (NER) pathway. Thereby, the chemotherapeutic effect of CDDP could be significantly potentiated because of reduced DNA lesion repair capacity by ERCC1-XPF nuclease system. Moreover, IR780@Pt NPs exhibited excellent NIR fluorescence and photoacoustic (PA) imaging capacity for in vivo imaging-guided NIR laser treatment. Ultimately, the IR780@Pt NPs mediated combinatorial chemophototherapy achieved potentiated anticancer efficacy against cancer cells in vitro and tumor inhibition performance in vivo. Overall, this study highlighted the significance of nanomedicine mediated targeted induction of mitochondrial dysfunction to potentiate chemotherapy for efficient combinatorial cancer therapy.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Cisplatino/farmacología , Fotoquimioterapia/métodos , Nanomedicina , Rayos Infrarrojos , Nanopartículas/uso terapéutico , Nanomedicina Teranóstica/métodos , Mitocondrias , Fototerapia/métodos , Línea Celular Tumoral
3.
Phytomedicine ; 61: 152860, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31048126

RESUMEN

BACKGROUND: Psoralidin (PL), a prenylated coumestrol, is isolated from Psoralea corylifolia L. (Fabaceae), which is frequently used for treatment of osteoporosis. PURPOSE: This study was designed to investigate the dual effects and potential mechanism of PL on promoting osteogenesis and inhibiting adipogenesis. METHODS: Bone marrow mesenchymal stem cells (BMSCs) were used to investigate the effect of PL on stimulating osteogenesis and inhibiting adipogenesis, while preosteoblast MC3T3-E1 cells and preadipocyte 3T3-L1 cells were employed to explore the potential mechanisms. Estradiol (E2) and ICI 182,780 (ICI) were used as the specific agonist and antagonist of classical estrogen receptors (ER), respectively, to interfere with classical ER signaling. Meanwhile, G-1 and G-15 were introduced as the selective agonist and antagonist of G protein coupled receptor 30 (GRP30, a membrane ER) to further clarify if membrane ER involved in PL mediating osteogenesis and adipogenesis RESULTS: PL not only promoted mineralization, but also inhibited adipocytes formation of BMSCs. In terms of osteogenesis, PL enhanced calcium nodule formation, alkaline phosphatase activity and osteocalcin levels in MC3T3-E1 cells. As for adipogenesis, PL decreased adipocyte formation in 3T3-L1 cells through down-regulating several mRNA expressions and protein synthesis of adipogenesis related factors. ICI completely blocked the effect of PL in promoting osteogenesis, but only partially suppressed its effect in inhibition of adipogenesis, while G-15 partially suppressed the effect of PL on promoting mineralization and inhibiting oil drop formation. Furthermore, during suppression of adipocyte differentiation, PL regulated protein kinase B / glycogen synthase kinase 3ß / ß-catenin signaling pathway. CONCLUSION: PL promoted osteogenesis via mediating classical ER pathway, and inhibited adipocytes formation by regulating combined classical and membrane ER pathways. PL might be a potential candidate for the treatment of postmenopausal osteoporosis by modulating the competitive relationship between osteogenesis and adipogenesis of bone marrow mesenchymal stem cells.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Benzofuranos/farmacología , Cumarinas/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Fulvestrant/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Masculino , Ratones , Osteogénesis/fisiología , Ratas Sprague-Dawley , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/metabolismo , Transducción de Señal/efectos de los fármacos , beta Catenina/metabolismo
4.
J Orthop Res ; 36(11): 2876-2885, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29802743

RESUMEN

This research was designed to investigate the fracture healing pattern in a rheumatoid arthritis (RA) rat model. A mid-shaft femur fracture (RA + F) model and normal fracture (NF) model as control were established. Micro-CT, H&E staining, TB staining, SO staining, tartrate-resistant acid phosphates, and immunohistochemistry test were performed. In the micro-CT images and H&E stains, fracture gaps were evident in the RA + F group 4 and 8 weeks after fracture. In detail, the bone mineral density, the ratio of bone volume to tissue volume, and trabecular thickness of the RA + F group were significantly lower than those of the NF group at all time points. Trabecular number value was significantly lower in the RA + F group 4 weeks after surgery in comparison with that of the NF group. Furthermore, the structure model index test result of the RA + F group was significantly higher than that of the NF group at all time points. TB staining and SO staining test results showed that the NF group had more cartilaginous callus in the earlier stage of bone healing process (4 weeks), and less cartilage callus formation in the later stage (8 weeks) in comparison with that of the RA + F group. Osteoclasts statistics score in the NF group were obviously lower than that of the RA + F group at all time points. MMP-3 and OPN protein levels of the fracture area in the RA + F group were significantly higher than those in the NF group. This study improves the understanding of the bone healing characteristics in patients with RA. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2876-2885, 2018.


Asunto(s)
Artritis Experimental/fisiopatología , Artritis Reumatoide/fisiopatología , Curación de Fractura , Animales , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Colágeno Tipo II , Femenino , Fracturas del Fémur/diagnóstico por imagen , Fracturas del Fémur/metabolismo , Fracturas del Fémur/patología , Fémur/metabolismo , Fémur/patología , Metaloproteinasa 3 de la Matriz/metabolismo , Osteopontina/metabolismo , Ratas Wistar , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA