Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Pharm Sin B ; 13(8): 3414-3424, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37655332

RESUMEN

A new class of potent liver injury protective compounds, phychetins A-D (1-4) featuring an unique 6/6/5/6/5 pentacyclic framework, were isolated and structurally characterized from a Chinese medicinal plant Phyllanthus franchetianus. Compounds 2-4 are three pairs of enantiomers that were initially obtained in a racemic manner, and were further separated by chiral HPLC preparation. Compounds 1-4 were proposed to be originated biosynthetically from a coexisting lignan via an intramolecular Friedel-Crafts reaction as the key step. A bioinspired total synthesis strategy was thus designated, and allowed the effective syntheses of compounds 2-4 in high yields. Some of compounds exhibited significant anti-inflammatory activities in vitro via suppressing the production of pro-inflammatory cytokine IL-1ß. Notably, compound 4, the most active enantiomeric pair in vitro, displayed prominent potent protecting activity against liver injury at a low dose of 3 mg/kg in mice, which could serve as a promising lead for the development of acute liver injury therapeutic agent.

2.
Biochem Pharmacol ; 130: 51-59, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28159622

RESUMEN

Phosphodiesterase-4 (PDE4) is an important drug target for treatment of inflammation-related diseases. Till now, natural PDE4 inhibitors are rare and their co-crystal structures with PDE4 are hardly available. In the present study, selaginpulvilins K and L (1 and 2), two novel fluorene derivatives, were isolated from a traditional Chinese medicine Selaginella pulvinata and exhibited remarkable inhibition against phosphodiesterase-4D (PDE4D) at IC50 11nM and 90nM, respectively. Compound 1 also showed a good selectivity across PDE families with the selective fold ranging from 30 to 909. To understand the recognition mechanism of selaginpulvilins towards PDE4, the crystal structure of PDE4D bound with 1 was successfully determined by the X-ray diffraction method and presented an unusual binding mode in which the stretched skeleton of the inhibitor bound shallowly to the active site but had interactions with multi sub-pockets, such as Q, HC, M, and S, especially strong interaction with the metal region. Assisted with molecular modeling, the structure-activity relationship and the selectivity of selaginpulvilins were also well explored, which would facilitate the future rational inhibitor design or structural optimizations.


Asunto(s)
Inhibidores de Fosfodiesterasa 4/química , Inhibidores de Fosfodiesterasa 4/farmacología , Selaginellaceae/química , Cristalografía por Rayos X , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA