Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plants (Basel) ; 13(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38592895

RESUMEN

Dendrobium officinale Kimura et Migo (D. officinale) is one of the most important traditional Chinese medicinal herbs, celebrated for its abundant bioactive ingredients. This study demonstrated that the diurnal temperature difference (DIF) (T1: 13/13 °C, T2: 25/13 °C, and T3: 25/25 °C) was more favorable for high chlorophyll, increased polysaccharide, and total flavonoid contents compared to constant temperature treatments in D. officinale PLBs. The transcriptome analysis revealed 4251, 4404, and 4536 differentially expressed genes (DEGs) in three different comparisons (A: 25/13 °C vs. 13/13 °C, B: 13/13 °C vs. 25/25 °C, and C: 25/13 °C vs. 25/25 °C, respectively). The corresponding up-/down-regulated DEGs were 1562/2689, 2825/1579, and 2310/2226, respectively. GO and KEGG enrichment analyses of DEGs showed that the pathways of biosynthesis of secondary metabolites, carotenoid biosynthesis, and flavonoid biosynthesis were enriched in the top 20; further analysis of the sugar- and flavonol-metabolism pathways in D. officinale PLBs revealed that the DIF led to a differential gene expression in the enzymes linked to sugar metabolism, as well as to flavonol metabolism. Certain key metabolic genes related to ingredient accumulation were identified, including those involved in polysaccharide metabolism (SUS, SUT, HKL1, HGL, AMY1, and SS3) and flavonol (UGT73C and UGT73D) metabolism. Therefore, these findings indicated that these genes may play an important role in the regulatory network of the DIF in the functional metabolites of D. officinale PLBs. In a MapMan annotation of abiotic stress pathways, the DEGs with significant changes in their expression levels were mainly concentrated in the heat-stress pathways, including heat-shock proteins (HSPs) and heat-shock transcription factors (HSFs). In particular, the expression levels of HSP18.2, HSP70, and HSF1 were significantly increased under DIF treatment, which suggested that HSF1, HSP70 and HSP18.2 may respond to the DIF. In addition, they can be used as candidate genes to study the effect of the DIF on the PLBs of D. officinale. The results of our qPCR analysis are consistent with those of the transcriptome-expression analysis, indicating the reliability of the sequencing. The results of this study revealed the transcriptome mechanism of the DIF on the accumulation of the functional metabolic components of D. officinale. Furthermore, they also provide an important theoretical basis for improving the quality of D. officinale via the DIF in production.

2.
Int J Biol Macromol ; 264(Pt 2): 130735, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471611

RESUMEN

Drought is the stressor with a significant adverse impact on the yield stability of tea plants. HD-ZIP III transcription factors (TFs) play important regulatory roles in plant growth, development, and stress responses. However, whether and how HD-ZIP III TFs are involved in drought response and tolerance in tea plants remains unclear. Here, we identified seven HD-ZIP III genes (CsHDZ3-1 to CsHDZ3-7) in tea plant genome. The evolutionary analysis demonstrated that CsHDZ3 members were subjected to purify selection. Subcellular localization analysis revealed that all seven CsHDZ3s located in the nucleus. Yeast self-activation and dual-luciferase reporter assays demonstrated that CsHDZ3-1 to CsHDZ3-4 have trans-activation ability whereas CsHDZ3-5 to CsHDZ3-7 served as transcriptional inhibitors. The qRT-PCR assay showed that all seven CsHDZ3 genes could respond to simulated natural drought stress and polyethylene glycol treatment. Further assays verified that all CsHDZ3 genes can be cleaved by csn-miR166. Overexpression of csn-miR166 inhibited the expression of seven CsHDZ3 genes and weakened drought tolerance of tea leaves. In contrast, suppression of csn-miR166 promoted the expression of seven CsHDZ3 genes and enhanced drought tolerance of tea leaves. These findings established the foundation for further understanding the mechanism of CsHDZ3-miR166 modules' participation in drought responses and tolerance.


Asunto(s)
Camellia sinensis , Resistencia a la Sequía , Camellia sinensis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genoma de Planta , Té/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Genomics Proteomics Bioinformatics ; 21(4): 769-787, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36791953

RESUMEN

The epitranscriptomic mark N6-methyladenosine (m6A), which is the predominant internal modification in RNA, is important for plant responses to diverse stresses. Multiple environmental stresses caused by the tea-withering process can greatly influence the accumulation of specialized metabolites and the formation of tea flavor. However, the effects of the m6A-mediated regulatory mechanism on flavor-related metabolic pathways in tea leaves remain relatively uncharacterized. We performed an integrated RNA methylome and transcriptome analysis to explore the m6A-mediated regulatory mechanism and its effects on flavonoid and terpenoid metabolism in tea (Camellia sinensis) leaves under solar-withering conditions. Dynamic changes in global m6A level in tea leaves were mainly controlled by two m6A erasers (CsALKBH4A and CsALKBH4B) during solar-withering treatments. Differentially methylated peak-associated genes following solar-withering treatments with different shading rates were assigned to terpenoid biosynthesis and spliceosome pathways. Further analyses indicated that CsALKBH4-driven RNA demethylation can directly affect the accumulation of volatile terpenoids by mediating the stability and abundance of terpenoid biosynthesis-related transcripts and also indirectly influence the flavonoid, catechin, and theaflavin contents by triggering alternative splicing-mediated regulation. Our findings revealed a novel layer of epitranscriptomic gene regulation in tea flavor-related metabolic pathways and established a link between the m6A-mediated regulatory mechanism and the formation of tea flavor under solar-withering conditions.


Asunto(s)
Camellia sinensis , ARN , ARN/metabolismo , Epigenoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Flavonoides , Terpenos/metabolismo , Té/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Molecules ; 27(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35807544

RESUMEN

As important factors to oolong tea quality, the accumulation and dynamic change in aroma substances attracts great attention. The volatile composition of oolong tea is closely related to the precursor contents. Fatty acids (FAs) and their derivatives are basic components of oolong tea fragrance during the postharvest process. However, information about the precursors of FAs during the postharvest process of oolong tea production is rare. To investigate the transformation of fatty acids during the process of oolong tea production, gas chromatograph−flame ionization detection (GC-FID) was conducted to analyze the composition of FAs. The results show that the content of total polyunsaturated FAs initially increased and then decreased. Specifically, the contents of α-linolenic acid, linoleic acid and other representative substances decreased after the turn-over process of oolong tea production. The results of partial least squares discrimination analysis (PLS-DA) showed that five types of FAs were obviously impacted by the processing methods of oolong tea (VIP > 1.0). LOX (Lipoxygenase, EC 1.13.11.12) is considered one of the key rate-limiting enzymes of long-chain unsaturated FAs in the LOX-HPL (hydroperoxide lyase) pathway, and the mechanical wounding occurring during the postharvest process of oolong tea production greatly elevated the activity of LOX.


Asunto(s)
Camellia sinensis , Compuestos Orgánicos Volátiles , Camellia sinensis/metabolismo , Ácidos Grasos/análisis , Hojas de la Planta/química , , Compuestos Orgánicos Volátiles/análisis
5.
Sheng Wu Gong Cheng Xue Bao ; 38(1): 303-327, 2022 Jan 25.
Artículo en Chino | MEDLINE | ID: mdl-35142139

RESUMEN

Oolong tea is a semi-fermented tea with strong flavor, which is widely favored by consumers because of its floral and fruity aroma as well as fresh and mellow taste. During the processing of oolong tea, withering is the first indispensable process for improving flavor formation. However, the molecular mechanism that affects the flavor formation of oolong tea during withering remains unclear. Transcriptome sequencing was used to analyze the difference among the fresh leaves, indoor-withered leaves and solar-withered leaves of oolong tea. A total of 10 793 differentially expressed genes were identified from the three samples. KEGG enrichment analysis showed that the differentially expressed genes were mainly involved in flavonoid synthesis, terpenoid synthesis, plant hormone signal transduction and spliceosome pathways. Subsequently, twelve differentially expressed genes and four differential splicing genes were identified from the four enrichment pathways for fluorescence quantitative PCR analysis. The results showed that the expression patterns of the selected genes during withering were consistent with the results in the transcriptome datasets. Further analysis revealed that the transcriptional inhibition of flavonoid biosynthesis-related genes, the transcriptional enhancement of terpenoid biosynthesis-related genes, as well as the jasmonic acid signal transduction and the alternative splicing mechanism jointly contributed to the flavor formation of high floral and fruity aroma and low bitterness in solar-withered leaves. The results may facilitate better understanding the molecular mechanisms of solar-withering treatment in flavor formation of oolong tea.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Perfilación de la Expresión Génica , Hojas de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Gusto , , Transcriptoma/genética
6.
Sheng Wu Gong Cheng Xue Bao ; 38(1): 359-373, 2022 Jan 25.
Artículo en Chino | MEDLINE | ID: mdl-35142142

RESUMEN

Carotenoid cleavage dioxygenase (CCD) family is important for production of volatile aromatic compounds and synthesis of plant hormones. To explore the biological functions and gene expression patterns of CsCCD gene family in tea plant, genome-wide identification of CsCCD gene family was performed. The gene structures, conserved motifs, chromosome locations, protein physicochemical properties, evolutionary characteristics, interaction network and cis-acting regulatory elements were predicted and analyzed. Real time-quantitative reverse transcription PCR (RT-qPCR) was used to detect the relative expression level of CsCCD gene family members under different leaf positions and light treatments during processing. A total of 11 CsCCD gene family members, each containing exons ranging from 1 to 11 and introns ranging from 0 to 10, were identified. The average number of amino acids and molecular weight were 519 aa and 57 643.35 Da, respectively. Phylogenetic analysis showed the CsCCD gene family was clustered into 5 major groups (CCD1, CCD4, CCD7, CCD8 and NCED). The CsCCD gene family mainly contained stress response elements, hormone response elements, light response elements and multi-factor response elements, and light response elements was the most abundant (142 elements). Expression analysis showed that the expression levels of CsCCD1 and CsCCD4 in elder leaves were higher than those in younger leaves and stems. With the increase of turning over times, the expression levels of CsCCD1 and CsCCD4 decreased, while supplementary LED light strongly promoted their expression levels in the early stage. The expression level of NCED in younger leaves was higher than that in elder leaves and stems on average, and the expression trend varied in the process of turning over. NCED3 first increased and then decreased, with an expression level 15 times higher than that in fresh leaves. In the late stage of turning over, supplementary LED light significantly promoted its gene expression. In conclusion, CsCCD gene family member expressions were regulated by mechanical force and light. These understandings may help to optimize tea processing techniques and improve tea quality.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo ,
7.
Food Res Int ; 137: 109347, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33233053

RESUMEN

Tea (Camellia sinensis (L.)) is an important economic plant. Light is the earliest external signal factor during the postharvest processing of oolong tea, and the solar withering is an indispensable process for aroma formation. In this study, Tieguanyin was used to analyze the effect of sunlight on aroma metabolism, which indicated that the main aroma compounds were significantly increased during solar withering for 15 min compared to the indoor withering. In addition, differentially expressed genes related to aroma metabolism were identified and quantified using the high-throughput Illumina RNA-Seq technology. The expression levels of key regulatory genes were consistent with the results from the gas chromatography-time of flight mass spectrometry (GC-TOF-MS) analysis, especially in terpenoid metabolic pathway, which showed that aroma metabolism could significantly respond to the short-term light, while its expression level was easily inhibited by the up-regulation of heat shock protein. Taken together, those data provides further insights into the mechanisms, contributing to aroma metabolism of tea plant.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Perfilación de la Expresión Génica , Odorantes/análisis , Hojas de la Planta/genética , Luz Solar ,
8.
J Agric Food Chem ; 68(45): 12749-12767, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33112139

RESUMEN

The unique aroma and flavor of oolong tea develop during the withering stage of postharvest processing. We explored the roles of miRNA-related regulatory networks during tea withering and their effects on oolong tea quality. We conducted transcriptome and miRNA analyses to identify differentially expressed (DE) miRNAs and target genes among fresh leaves, indoor-withered leaves, and solar-withered leaves. We identified 32 DE-miRNAs and 41 target genes involved in phytohormone signal transduction and ABC transporters. Further analyses indicated that these two pathways regulated the accumulation of flavor-related metabolites during tea withering. Flavonoid accumulation was correlated with the miR167d_1-ARF-GH3, miR845-ABCC1-3/ABCC2, miR166d-5p_1-ABCC1-2, and miR319c_3-PIF-ARF modules. Terpenoid content was correlated with the miR171b-3p_2-DELLA-MYC2 and miR166d-5p_1-ABCG2-MYC2 modules. These modules inhibited flavonoid biosynthesis and enhanced terpenoid biosynthesis in solar-withered leaves. Low auxin and gibberellic acid contents and circRNA-related regulatory networks also regulated the accumulation of flavor compounds in solar-withered leaves. Our analyses reveal how solar withering produces high-quality oolong tea.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Camellia sinensis/genética , MicroARNs/genética , Fitoquímicos/química , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Transportadoras de Casetes de Unión a ATP/genética , Camellia sinensis/química , Camellia sinensis/metabolismo , Camellia sinensis/efectos de la radiación , Manipulación de Alimentos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , MicroARNs/metabolismo , Odorantes/análisis , Fitoquímicos/metabolismo , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/metabolismo , Transcriptoma
9.
PLoS One ; 14(10): e0223609, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31600284

RESUMEN

Superoxide dismutases (SODs), as a family of metalloenzymes related to the removal of reactive oxygen species (ROS), have not previously been investigated at genome-wide level in tea plant. In this study, 10 CsSOD genes were identified in tea plant genome, including 7 Cu/Zn-SODs (CSDs), 2 Fe-SODs (FSDs) and one Mn-SOD (MSD), and phylogenetically classified in three subgroups, respectively. Physico-chemical characteristic, conserved motifs and potential protein interaction analyses about CsSOD proteins were carried out. Exon-intron structures and codon usage bias about CsSOD genes were also examined. Exon-intron structures analysis revealed that different CsSOD genes contained various number of introns. On the basis of the prediction of regulatory miRNAs of CsSODs, a modification 5' RNA ligase-mediated (RLM)-RACE was performed and validated that csn-miR398a-3p-1 directly cleaves CsCSD4. By prediction of cis-acting elements, the expression patterns of 10 CsSOD genes and their regulatory miRNAs were detected under cold, drought, exogenous methyl jasmonate (MeJA) and gibberellin (GA3) treatments. The results showed that most of CsSODs except for CsFSD2 were induced under cold stress and CsCSDs may play primary roles under drought stress; exogenous GA3 and MeJA could also stimulated/inhibited distinct CsSODs at different stages. In addition, we found that csn-miR398a-3p-1 negatively regulated the expression of CsCSD4 may be a crucial regulatory mechanism under cold stress. This study provides a certain basis for the studies about stress resistance in tea plants, even provide insight into comprehending the classification, evolution, diverse functions and influencing factors of expression patterns for CsSOD genes.


Asunto(s)
Camellia sinensis/genética , Genoma de Planta , MicroARNs/genética , Familia de Multigenes , Reguladores del Crecimiento de las Plantas/farmacología , Estrés Fisiológico/genética , Superóxido Dismutasa/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Secuencia de Bases , Camellia sinensis/efectos de los fármacos , Codón/genética , Secuencia Conservada/genética , Exones/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Intrones/genética , MicroARNs/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Mapas de Interacción de Proteínas , Reproducibilidad de los Resultados , Estrés Fisiológico/efectos de los fármacos , Superóxido Dismutasa/metabolismo
10.
BMC Genomics ; 20(1): 265, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30943892

RESUMEN

BACKGROUND: The two original plants of the oolong tea cultivar ('Tieguanyin') are "Wei shuo" 'Tieguanyin'-TGY (Wei) and "Wang shuo" 'Tieguanyin'-TGY (Wang). Another cultivar, 'Benshan' (BS), is similar to TGY in its aroma, taste, and genetic make-up, but it lacks the "Yin Rhyme" flavor. We aimed to identify differences in biochemical characteristics and gene expression among these tea plants. RESULTS: The results of spectrophotometric, high performance liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS) analyses revealed that TGY (Wei) and TGY (Wang) had deeper purple-colored leaves and higher contents of anthocyanin, catechins, caffeine, and limonene compared with BS. Analyses of transcriptome data revealed 12,420 differentially expressed genes (DEGs) among the cultivars. According to a Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the flavonoid, caffeine, and limonene metabolic pathways were highly enriched. The transcript levels of the genes involved in these three metabolic pathways were not significantly different between TGY (Wei) and TGY (Wang), except for two unigenes encoding IMPDH and SAMS, which are involved in caffeine metabolism. The comparison of TGY vs. BS revealed eight up-regulated genes (PAL, C4H, CHS, F3'H, F3H, DFR, ANS, and ANR) and two down-regulated genes (FLS and CCR) in flavonoid metabolism, four up-regulated genes (AMPD, IMPDH, SAMS, and 5'-Nase) and one down-regulated XDH gene in caffeine metabolism; and two down-regulated genes (ALDH and HIBADH) in limonene degradation. In addition, the expression levels of the transcription factor (TF) PAP1 were significantly higher in TGY than in BS. Therefore, high accumulation of flavonoids, caffeine, and limonene metabolites and the expression patterns of their related genes in TGY might be beneficial for the formation of the "Yin Rhyme" flavor. CONCLUSIONS: Transcriptomic, HPLC, and GC-MS analyses of TGY (Wei), TGY (Wang), and BS indicated that the expression levels of genes related to secondary metabolism and high contents of catechins, anthocyanin, caffeine, and limonene may contribute to the formation of the "Yin Rhyme" flavor in TGY. These findings provide new insights into the relationship between the accumulation of secondary metabolites and sensory quality, and the molecular mechanisms underlying the formation of the unique flavor "Yin Rhyme" in TGY.


Asunto(s)
Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fitoquímicos/metabolismo , Proteínas de Plantas/genética , Transcriptoma , Camellia sinensis/clasificación , Flavonoides/metabolismo , Redes y Vías Metabólicas , Metaboloma , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo
11.
BMC Plant Biol ; 17(1): 211, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29157225

RESUMEN

BACKGROUND: Drought stress is one of the major natural challenges in the main tea-producing regions of China. The tea plant (Camellia sinensis) is a traditional beverage plant whose growth status directly affects tea quality. Recent studies have revealed that microRNAs (miRNAs) play key functions in plant growth and development. Although some miRNAs have been identified in C. sinensis, little is known about their roles in the drought stress response of tea plants. RESULTS: Physiological characterization of Camellia sinensis 'Tieguanyin' under drought stress showed that the malondialdehyde concentration and electrical conductivity of leaves of drought-stressed plants increased when the chlorophyll concentration decreased under severe drought stress. We sequenced four small-RNA (sRNA) libraries constructed from leaves of plants subjected to four different treatments, normal water supply (CK); mild drought stress (T1); moderate drought stress (T2) and severe drought stress (T3). A total of 299 known mature miRNA sequences and 46 novel miRNAs were identified. Gene Ontology enrichment analysis revealed that most of the differentially expressed-miRNA target genes were related to regulation of transcription. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the most highly enriched pathways under drought stress were D-alanine metabolism, sulfur metabolism, and mineral absorption pathways. Real-time quantitative PCR (qPCR) was used to validate the expression patterns of 21 miRNAs (2 up-regulated and 19 down-regulated under drought stress). The observed co-regulation of the miR166 family and their targets ATHB-14-like and ATHB-15-like indicate the presence of negative feedback regulation in miRNA pathways. CONCLUSIONS: Analyses of drought-responsive miRNAs in tea plants showed that most of differentially expressed-miRNA target genes were related to regulation of transcription. The results of study revealed that the expressions of phase-specific miRNAs vary with morphological, physiological, and biochemical changes. These findings will be useful for research on drought resistance and provide insights into the mechanisms of drought adaptation and resistance in C. sinensis.


Asunto(s)
Camellia sinensis/fisiología , MicroARNs/fisiología , Camellia sinensis/genética , Camellia sinensis/metabolismo , Clorofila/metabolismo , Deshidratación/fisiopatología , Regulación de la Expresión Génica de las Plantas/genética , Ontología de Genes , Genes de Plantas/genética , Genes de Plantas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
12.
Gigascience ; 6(5): 1-14, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28368449

RESUMEN

Longan (Dimocarpus longan Lour.), an important subtropical fruit in the family Sapindaceae, is grown in more than 10 countries. Longan is an edible drupe fruit and a source of traditional medicine with polyphenol-rich traits. Tree size, alternate bearing, and witches' broom disease still pose serious problems. To gain insights into the genomic basis of longan traits, a draft genome sequence was assembled. The draft genome (about 471.88 Mb) of a Chinese longan cultivar, "Honghezi," was estimated to contain 31 007 genes and 261.88 Mb of repetitive sequences. No recent whole-genome-wide duplication event was detected in the genome. Whole-genome resequencing and analysis of 13 cultivated D. longan accessions revealed the extent of genetic diversity. Comparative transcriptome studies combined with genome-wide analysis revealed polyphenol-rich and pathogen resistance characteristics. Genes involved in secondary metabolism, especially those from significantly expanded (DHS, SDH, F3΄H, ANR, and UFGT) and contracted (PAL, CHS, and F3΄5΄H) gene families with tissue-specific expression, may be important contributors to the high accumulation levels of polyphenolic compounds observed in longan fruit. The high number of genes encoding nucleotide-binding site leucine-rich repeat (NBS-LRR) and leucine-rich repeat receptor-like kinase proteins, as well as the recent expansion and contraction of the NBS-LRR family, suggested a genomic basis for resistance to insects, fungus, and bacteria in this fruit tree. These data provide insights into the evolution and diversity of the longan genome. The comparative genomic and transcriptome analyses provided information about longan-specific traits, particularly genes involved in its polyphenol-rich and pathogen resistance characteristics.


Asunto(s)
Frutas/genética , Genoma de Planta , Sapindaceae/genética , Empalme Alternativo , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Filogenia , Polimorfismo de Nucleótido Simple , Polifenoles/biosíntesis , Análisis de Secuencia de ARN
13.
PLoS One ; 12(2): e0171173, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28225779

RESUMEN

MicroRNAs are endogenous non-coding small RNAs playing crucial regulatory roles in plants. Tea, a globally popular non-alcoholic drink, is rich in health-enhancing catechins. In this study, 69 conserved and 47 novel miRNAs targeting 644 genes were identified by high-throughout sequencing. Predicted target genes of miRNAs were mainly involved in plant growth, signal transduction, morphogenesis and defense. To further identify targets of tea miRNAs, degradome sequencing and RNA ligase-mediated rapid amplification of 5'cDNA ends (RLM-RACE) were applied. Using degradome sequencing, 26 genes mainly involved in transcription factor, resistance protein and signal transduction protein synthesis were identified as potential miRNA targets, with 5 genes subsequently verified. Quantitative real-time PCR (qRT-PCR) revealed that the expression patterns of novel-miR1, novel-miR2, csn-miR160a, csn-miR162a, csn-miR394 and csn-miR396a were negatively correlated with catechin content. The expression of six miRNAs (csn-miRNA167a, csn-miR2593e, csn-miR4380a, csn-miR3444b, csn-miR5251 and csn-miR7777-5p.1) and their target genes involved in catechin biosynthesis were also analyzed by qRT-PCR. Negative and positive correlations were found between these miRNAs and catechin contents, while positive correlations were found between their target genes and catechin content. This result suggests that these miRNAs may negatively regulate catechin biosynthesis by down-regulating their biosynthesis-related target genes. Taken together, our results indicate that miRNAs are crucial regulators in tea, with the results of 5'-RLM-RACE and expression analyses revealing the important role of miRNAs in catechin anabolism. Our findings should facilitate future research to elucidate the function of miRNAs in catechin biosynthesis.


Asunto(s)
Camellia sinensis/metabolismo , Catequina/biosíntesis , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , ARN de Planta/metabolismo , Camellia sinensis/genética , MicroARNs/genética , ARN de Planta/genética , Análisis de Secuencia de ARN
14.
J Sci Food Agric ; 96(6): 1982-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26084622

RESUMEN

BACKGROUND: Tea (Camellia sinensis L.), contains high levels of secondary metabolic products with both commercial and medicinal value. At present, most cultivated tea plant have green leaves; although tea plants with purple leaves exist, their supply is inadequate. During leaf growth and maturation, the content of secondary metabolic compounds decreases, resulting in higher content in tender purple leaves (TPL), and lower content in mature green leaves (MGL). The aim of this study was to analyze the differential expression of genes in these two tissues, with a cDNA-AFLP (amplified fragment length polymorphism) approach and biochemical analysis. RESULTS: Compared to MGL samples, TPL samples had higher content of anthocyanin, total polyphenols and total catechins, a higher carotenoid-to-chlorophyll ratio and lower content of soluble sugars (glucose, fructose and sucrose). TPL samples showed a lower photosynthetic ability, demonstrated by a lower CO2 assimilation and carbohydrate accumulation rate. Using cDNA-AFLP with 256 primer combinations, differential transcript profiling generated 148 matched transcript-derived fragments (TDFs). Among these TDFs, 77 genes were upregulated and 71 were downregulated. These were grouped into 11 functional categories which are important for final tea quality parameters. CONCLUSIONS: Our data presented the first effort to elucidate the molecular basis of differential accumulation of key metabolites during tea leaf maturation. Our findings also provided a theoretical molecular explanation for the color change during leaf growth.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Hojas de la Planta/metabolismo , Té/metabolismo , Cafeína/metabolismo , Metabolismo de los Hidratos de Carbono , Carbohidratos/química , Dióxido de Carbono/metabolismo , Catecoles/metabolismo , Malondialdehído , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Polifenoles/genética , Polifenoles/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Transducción de Señal , Té/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA