Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurosci ; 55(9-10): 2108-2121, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33745155

RESUMEN

Early life stress (ELS) programs hypothalamus-pituitary-adrenal (HPA) axis activity and affects synaptic plasticity and cognitive performance in adults; however, the effects of ELS during the temporal window of vulnerability are poorly understood. This study aimed to thoroughly characterize the effects of ELS in the form of periodic maternal separation (MS180) during the time of exposure to stress. Hippocampal corticotropin-releasing hormone (CRH) gene expression and baseline HPA axis activity were analyzed at postnatal (P) days 6, 12, 15, and 21, and in adulthood (P75); these factors were correlated with plasticity markers and adult behavior. Our results indicate that MS180 induces an increase in hippocampal CRH expression at P9, P12, and P15, whereas an increase in hypothalamic CRH expression was observed from P12 to P21. Increased arginine-vasopressin expression and corticosterone levels were observed only at P21. Moreover, MS180 caused transient alterations in hypothalamic synaptophysin expression during early life. As adults, MS180 rats showed a passive coping strategy in the forced swimming test, cognitive impairments in the object location test, increased hypothalamic CRH expression, and decreased oxytocin (OXT) expression. Spearman's analysis indicated that cognitive impairments correlated with CRH and OXT expression. In conclusion, our data indicate that MS180 induces a transient increase in hippocampal CRH expression in neonates that precedes the effects on hypothalamic neuropeptides, confirming the role of increased CRH during the temporal window of vulnerability as a mediator of some of the detrimental effects of ELS on brain development and adult behavior.


Asunto(s)
Hormona Liberadora de Corticotropina , Neuropéptidos , Estrés Psicológico , Animales , Ratas , Corticosterona/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/metabolismo , Privación Materna , Neuropéptidos/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Estrés Psicológico/metabolismo
2.
J Neurosci Res ; 71(6): 811-8, 2003 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-12605407

RESUMEN

The presence of glia and glial glutamate transporters seems to modify glutamate-mediated toxicity in neuronal cultures. In this work we cultured cortical cells in serum-containing medium and in a serum-free medium (Neurobasal medium + B27 supplement) and studied the expression of the glutamate transporters GLAST, GLT, and EAAC by immunocytochemistry and RT-PCR. The proportion of glial cells was below 10% in the Neurobasal medium and 46% in the serum-containing medium. Semiquantitative evaluation of the mRNA for the glutamate transporters showed similar amounts in cells grown in serum-free and serum-containing media. We detected immunoreactivity for the three transporters in both media, but EAAC was coexpressed with the neuronal marker MAP2, whereas GLAST and GLT predominated in nonneuronal cells. When the cultures were treated with glutamate for 15 min, the cultures in serum-containing medium showed a clear concentration-dependent neuronal death, whereas cells primed in this medium and switched to Neurobasal medium, as well as cells grown only in the latter, were less sensitive to glutamate concentrations up to 1 mM. A similar difference in the sensitivity to excitotoxicity was observed when the glutamate uptake inhibitor L-trans-2,4-pyrrolidine-dicarboxylate was applied during 6 hr, although the accumulation of extracellular glutamate was similar in the two media. We conclude that glutamate transporters with the culture conditions studied are sensitive to glutamate uptake inhibition and that Neurobasal/B27 medium protects cells against excitotoxicity.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/biosíntesis , Medio de Cultivo Libre de Suero/farmacología , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Sistema de Transporte de Aminoácidos X-AG/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Muerte Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Medio de Cultivo Libre de Suero/química , Ácido Glutámico/análisis , Ácido Glutámico/toxicidad , Inmunohistoquímica , ARN Mensajero/análisis , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA