Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Immunol ; 14: 1141731, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359536

RESUMEN

Delayed wound healing is a devastating complication of diabetes and supplementation with fish oil, a source of anti-inflammatory omega-3 (ω-3) fatty acids including eicosapentaenoic acid (EPA), seems an appealing treatment strategy. However, some studies have shown that ω-3 fatty acids may have a deleterious effect on skin repair and the effects of oral administration of EPA on wound healing in diabetes are unclear. We used streptozotocin-induced diabetes as a mouse model to investigate the effects of oral administration of an EPA-rich oil on wound closure and quality of new tissue formed. Gas chromatography analysis of serum and skin showed that EPA-rich oil increased the incorporation of ω-3 and decreased ω-6 fatty acids, resulting in reduction of the ω-6/ω-3 ratio. On the tenth day after wounding, EPA increased production of IL-10 by neutrophils in the wound, reduced collagen deposition, and ultimately delayed wound closure and impaired quality of the healed tissue. This effect was PPAR-γ-dependent. EPA and IL-10 reduced collagen production by fibroblasts in vitro. In vivo, topical PPAR-γ-blockade reversed the deleterious effects of EPA on wound closure and on collagen organization in diabetic mice. We also observed a reduction in IL-10 production by neutrophils in diabetic mice treated topically with the PPAR-γ blocker. These results show that oral supplementation with EPA-rich oil impairs skin wound healing in diabetes, acting on inflammatory and non-inflammatory cells.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ácidos Grasos Omega-3 , Animales , Ratones , Ácido Eicosapentaenoico/farmacología , Interleucina-10/farmacología , PPAR gamma , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Cicatrización de Heridas , Colágeno/metabolismo , Suplementos Dietéticos
2.
Front Oncol ; 12: 966404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091161

RESUMEN

Drug resistance is a major challenge for all oncological treatments that involve the use of cytotoxic agents. Recent therapeutic alternatives cannot circumvent the ability of cancer cells to adapt or alter the natural selection of resistant cells, so the problem persists. In neuroblastoma, recurrence can occur in up to 50% of high-risk patients. Therefore, the identification of novel therapeutic targets capable of modulating survival or death following classical antitumor interventions is crucial to address this problem. In this study, we investigated the role of the P2X7 receptor in chemoresistance. Here, we elucidated the contributions of P2X7 receptor A and B isoforms to neuroblastoma chemoresistance, demonstrating that the B isoform favors resistance through a combination of mechanisms involving drug efflux via MRP-type transporters, resistance to retinoids, retaining cells in a stem-like phenotype, suppression of autophagy, and EMT induction, while the A isoform has opposite and complementary roles.

3.
Cytometry A ; 97(9): 872-881, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32686260

RESUMEN

Malaria is a threat to human mankind and kills about half a million people every year. On the other hand, COVID-19 resulted in several hundred thousand deaths since December 2019 and remains without an efficient and safe treatment. The antimalarials chloroquine (CQ) and its analog, hydroxychloroquine (HCQ), have been tested for COVID-19 treatment, and several conflicting evidence has been obtained. Therefore, the aim of this review was to summarize the evidence regarding action mechanisms of these compounds against Plasmodium and SARS-CoV-2 infection, together with cytometry applications. CQ and HCQ act on the renin angiotensin system, with possible implications on the cardiorespiratory system. In this context, flow and image cytometry emerge as powerful technologies to investigate the mechanism of therapeutic candidates, as well as for the identification of the immune response and prognostics of disease severity. Data from the large randomized trials support the conclusion that CQ and HCQ do not provide any clinical improvements in disease severity and progression of SARS-CoV-2 patients, as well as they do not present any solid evidence of increased serious side effects. These drugs are safe and effective antimalarials agents, but in SARS-CoV-2 patients, they need further studies in the context of clinical trials. © 2020 International Society for Advancement of Cytometry.


Asunto(s)
Antimaláricos/uso terapéutico , Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , Cloroquina/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Malaria/tratamiento farmacológico , Plasmodium/efectos de los fármacos , Neumonía Viral/tratamiento farmacológico , Animales , Antimaláricos/efectos adversos , Antivirales/efectos adversos , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Cloroquina/efectos adversos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Citometría de Flujo , Interacciones Microbiota-Huesped , Interacciones Huésped-Parásitos , Humanos , Malaria/diagnóstico , Malaria/inmunología , Malaria/parasitología , Pandemias , Plasmodium/inmunología , Plasmodium/patogenicidad , Neumonía Viral/diagnóstico , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Resultado del Tratamiento , Tratamiento Farmacológico de COVID-19
4.
Prog Neuropsychopharmacol Biol Psychiatry ; 80(Pt A): 54-62, 2018 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-28576415

RESUMEN

Human induced pluripotent stem cells (iPSCs) represent a revolutionary tool for disease modeling and drug discovery. The generation of tissue-relevant cell types exhibiting a patient's genetic and molecular background offers the ability to develop individual and effective therapies. In this review, we present some major achievements in the neuroscience field using iPSCs and discuss promising perspectives in personalized medicine. In addition to disease modeling, the understanding of the cellular and molecular basis of neurological disorders is explored, including the discovery of new targets and potential drugs. Ultimately, we highlight how iPSC technology, together with genome editing approaches, may bring a deep impact on pre-clinical trials by reducing costs and increasing the success of treatments in a personalized fashion.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Células Madre Embrionarias , Edición Génica/métodos , Células Madre Pluripotentes Inducidas , Modelos Neurológicos , Enfermedades del Sistema Nervioso , Medicina de Precisión/métodos , Humanos , Enfermedades del Sistema Nervioso/terapia
5.
Mol Cancer ; 14: 201, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26597723

RESUMEN

BACKGROUND: One of the challenging problems of current radio-chemotherapy is recurrence and metastasis of cancer cells that survive initial treatment. We propose that one of the unwanted effects of radiochemotherapy is the release from damaged ("leaky") cells of nucleotides such as ATP and UTP that exert pro-metastatic functions and can directly stimulate chemotaxis of cancer cells. METHODS: To address this problem in a model of human lung cancer (LC), we employed several complementary in vitro and in vivo approaches to demonstrate the role of extracellular nucleotides (EXNs) in LC cell line metastasis and tumor progression. We measured concentrations of EXNs in several organs before and after radiochemotherapy. The purinergic receptor agonists and antagonists, inhibiting all or selected subtypes of receptors, were employed in in vitro and in vivo pro-metastatic assays. RESULTS: We found that EXNs accumulate in several organs in response to radiochemotherapy, and RT-PCR analysis revealed that most of the P1 and P2 receptor subtypes are expressed in human LC cells. EXNs were found to induce chemotaxis and adhesion of LC cells, and an autocrine loop was identified that promotes the proliferation of LC cells. Most importantly, metastasis of these cells could be inhibited in immunodeficient mice in the presence of specific small molecule inhibitors of purinergic receptors. CONCLUSIONS: Based on this result, EXNs are novel pro-metastatic factors released particularly during radiochemotherapy, and inhibition of their pro-metastatic effects via purinergic signaling could become an important part of anti-metastatic treatment.


Asunto(s)
Adenosina Trifosfato/fisiología , Factores Quimiotácticos/fisiología , Quimiotaxis , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/patología , Animales , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular , Quimioradioterapia/efectos adversos , Líquido Extracelular/fisiología , Factor de Crecimiento de Hepatocito/fisiología , Humanos , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/prevención & control , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Ratones Endogámicos C57BL , Ratones SCID , Antagonistas de Receptores Purinérgicos P1/farmacología , Antagonistas del Receptor Purinérgico P2/farmacología , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA