Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 329: 118155, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593962

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: A drug pair is a fundamental aspect of traditional Chinese medicine prescriptions. Scutellaria baicalensis Georgi and Coptis chinensis Franch, commonly used as an herb couple (SBCC), are representative heat-clearing and dampness-drying drugs. They possess functions such as clearing heat, drying dampness, purging fire, and detoxifying. These herbs are used in both traditional and modern medicine for treating inflammation. AIM OF THE STUDY: This study investigated the effects of SBCC on cytokine storm syndrome (CSS) and explored its potential regulatory mechanism. MATERIALS AND METHODS: We assessed the impact of SBCC in a sepsis-induced acute lung injury mouse model by administering an intraperitoneal injection of LPS (15 mg/kg). The cytokine levels in the serum and lungs, the wet-to-dry ratio of the lungs, and lung histopathological changes were evaluated. The macrophages in the lung tissue were examined through transmission electron microscopy. Western blot was used to measure the levels of the CD39/NLRP3/GSDMD pathway-related proteins. Immunofluorescence imaging was used to assess the activation of pro-caspase-1 and ASC and their interaction. AMP-Glo™ assay was used to screen for active ingredients in SBCC targeting CD39. One of the ingredients was selected, and its effect on cell viability was assessed. We induced inflammation in macrophages using LPS + ATP and detected the levels of proinflammatory factors. The images of cell membrane large pores were captured using scanning electron microscopy, the interaction between NLRP3 and ASC was detected using immunofluorescence imaging, and the levels of CD39/NLRP3/GSDMD pathway-related proteins were assessed using Western blot. RESULTS: SBCC administration effectively mitigated LPS-induced cytokine storm, pulmonary edema and lung injury. Furthermore, it repressed the programmed death of lung tissue macrophages by inhibiting the NLRP3/GSDMD pyroptosis pathway and regulating the CD39 purinergic pathway. Based on the results of the AMP-Glo™ assay, we selected wogonoside for further valuation. Wogonoside alleviated LPS + ATP-induced inflammatory damage by regulating the inhibiting the NLRP3/GSDMD pyroptosis pathway and regulating the CD39 purinergic pathway. However, its effect on NLRP3 is not mediated though CD39. CONCLUSION: SBCC and its active small-molecule ingredient, wogonoside, improved CSS by regulating the NLRP3/GSDMD pyroptosis pathway and its upstream CD39 purinergic pathway. It is essential to note that the regulatory effect of wogonoside on NLRP3 is not mediated by CD39.


Asunto(s)
Lesión Pulmonar Aguda , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Masculino , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Glucósidos/farmacología , Scutellaria baicalensis/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Proteínas de Unión a Fosfato/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Células RAW 264.7 , Antígenos CD/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad
2.
Food Funct ; 13(19): 9782-9795, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36097956

RESUMEN

The assembly of inflammasomes drives caspase-1 activation, which further promotes proinflammatory cytokine secretion and downstream pyroptosis. The discovery of novel caspase-1 inhibitors is pivotal to developing new therapeutic means for inflammasome-involved diseases. In our present study, sennoside A (Sen A), a popular ingredient in multiple weight-loss medicines and dietary supplements, is found to potently inhibit the enzymatic activity of caspase-1 in vitro. Sen A considerably decreased IL-1ß production in macrophages stimulated by LPS plus ATP, nigericin or MSU as well as poly(dA:dT) transfection, and remedied ROS-involved pyroptosis via caspase-1 inhibition. Mechanistically, Sen A not only suppressed the assembly of both NLRP3 and AIM2 inflammasome but also affected the priming process of NLRP3 inflammasome by blocking NF-κB signaling. Sen A significantly ameliorated the pathophysiological effect in LPS-, MSU- and carrageenan-challenged rodent models by suppressing inflammasome activation. Furthermore, P2X7 was indispensable for Sen A inhibiting NLRP3 inflammasome since it failed to further decrease IL-1ß and IL-18 production in LPS plus ATP-stimulated BMDMs that were transfected with P2X7 siRNA. Sen A also restrained the large pore-forming functionalities of the P2X7R as verified by the YO-PRO-1 uptake assay. Taken together, Sen A inactivates caspase-1 to inhibit NLRP3 and AIM2 inflammasome-involved inflammation in a P2X7-dependent manner, making it an attractive candidate as a caspase-1 small-molecular inhibitor.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Péptido Hidrolasas/farmacología , Adenosina Trifosfato , Carragenina , Caspasa 1/genética , Caspasas , Interleucina-18 , Interleucina-1beta/genética , Lipopolisacáridos/farmacología , FN-kappa B/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Nigericina , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno , Senósidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA