Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mater Horiz ; 8(6): 1776-1782, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34594564

RESUMEN

Bacterial wound infections are a threat to public health. Although antibiotics currently provide front-line treatments for bacterial infections, the development of drug resistance coupled with the defenses provided through biofilm formation render these infections difficult, if not impossible, to cure. Antimicrobials from natural resources provide unique antimicrobial mechanisms and are generally recognized as safe and sustainable. Herein, an all-natural antimicrobial platform is reported. It is active against bacterial biofilms and accelerates healing of wound biofilm infections in vivo. This antimicrobial platform uses gelatin stabilized by photocrosslinking using riboflavin (vitamin B2) as a photocatalyst, and carvacrol (the primary constituent of oregano oil) as the active antimicrobial. The engineered nanoemulsions demonstrate broad-spectrum antimicrobial activity towards drug-resistant bacterial biofilms and significantly expedite wound healing in an in vivo murine wound biofilm model. The antimicrobial activity, wound healing promotion, and biosafety of these nanoemulsions provide a readily translatable and sustainable strategy for managing wound infections.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Infección de Heridas , Animales , Antibacterianos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Biopelículas , Ratones , Infección de Heridas/tratamiento farmacológico
2.
ACS Infect Dis ; 5(9): 1590-1596, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31251554

RESUMEN

Biofilm infections are responsible for at least 65% of human bacterial infections. These biofilms are refractory to conventional antibiotics, leading to chronic infections and nonhealing wounds. Plant-derived antibiotics (phytochemicals) are promising alternative antimicrobial treatments featuring antimicrobial properties. However, their poor solubility in aqueous media limits their application in treating biofilm infections. Phytochemicals were incorporated into cross-linked polymer nanocomposite "sponges" for the treatment of bacterial biofilms. The results indicated encapsulating low log P phytochemicals effectively eliminated biofilms while demonstrating low cytotoxicity against mammalian fibroblast cells.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Fitoquímicos/farmacología , Células 3T3 , Animales , Antibacterianos/química , Biopelículas/efectos de los fármacos , Cápsulas , Reactivos de Enlaces Cruzados/química , Composición de Medicamentos , Ratones , Pruebas de Sensibilidad Microbiana , Nanocompuestos/química , Fitoquímicos/química
3.
J Am Chem Soc ; 140(38): 12137-12143, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30169023

RESUMEN

The rapid emergence of antibiotic-resistant bacterial "superbugs" with concomitant treatment failure and high mortality rates presents a severe threat to global health. The superbug risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that render them refractory to available treatments. We hypothesized that efficient antimicrobial agents could be generated through careful engineering of hydrophobic and cationic domains in a synthetic semirigid polymer scaffold, mirroring and amplifying attributes of antimicrobial peptides. We report the creation of polymeric nanoparticles with highly efficient antimicrobial properties. These nanoparticles eradicate biofilms with low toxicity to mammalian cells and feature unprecedented therapeutic indices against red blood cells. Most notably, bacterial resistance toward these nanoparticles was not observed after 20 serial passages, in stark contrast to clinically relevant antibiotics where significant resistance occurred after only a few passages.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Nanopartículas/química , Polímeros/farmacología , Compuestos de Amonio Cuaternario/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/toxicidad , Enterobacter cloacae/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Células 3T3 NIH , Nanopartículas/toxicidad , Polímeros/síntesis química , Polímeros/química , Polímeros/toxicidad , Pseudomonas aeruginosa/efectos de los fármacos , Compuestos de Amonio Cuaternario/síntesis química , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/toxicidad
4.
ACS Nano ; 11(1): 946-952, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28005325

RESUMEN

Infections caused by bacterial biofilms are an emerging threat to human health. Conventional antibiotic therapies are ineffective against biofilms due to poor penetration of the extracellular polymeric substance secreted by colonized bacteria coupled with the rapidly growing number of antibiotic-resistant strains. Essential oils are promising natural antimicrobial agents; however, poor solubility in biological conditions limits their applications against bacteria in both dispersed (planktonic) and biofilm settings. We report here an oil-in-water cross-linked polymeric nanocomposite (∼250 nm) incorporating carvacrol oil that penetrates and eradicates multidrug-resistant (MDR) biofilms. The therapeutic potential of these materials against challenging wound biofilm infections was demonstrated through specific killing of bacteria in a mammalian cell-biofilm coculture wound model.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Reactivos de Enlaces Cruzados/farmacología , Nanocompuestos/química , Polímeros/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/química , Relación Dosis-Respuesta a Droga , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Células 3T3 NIH , Polímeros/síntesis química , Polímeros/química , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Relación Estructura-Actividad
5.
ACS Nano ; 9(8): 7775-82, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26083534

RESUMEN

Bacterial biofilms are widely associated with persistent infections. High resistance to conventional antibiotics and prevalent virulence makes eliminating these bacterial communities challenging therapeutic targets. We describe here the fabrication of a nanoparticle-stabilized capsule with a multicomponent core for the treatment of biofilms. The peppermint oil and cinnamaldehyde combination that comprises the core of the capsules act as potent antimicrobial agents. An in situ reaction at the oil/water interface between the nanoparticles and cinnamaldehyde structurally augments the capsules to efficiently deliver the essential oil payloads, effectively eradicating biofilms of clinically isolated pathogenic bacteria strains. In contrast to their antimicrobial action, the capsules selectively promoted fibroblast proliferation in a mixed bacteria/mammalian cell system making them promising for wound healing applications.


Asunto(s)
Acroleína/análogos & derivados , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Nanopartículas/química , Aceites de Plantas/farmacología , Acroleína/química , Animales , Antibacterianos/química , Biopelículas/crecimiento & desarrollo , Transporte Biológico , Cápsulas , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Portadores de Fármacos , Composición de Medicamentos , Emulsiones , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/fisiología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Mentha piperita , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/fisiología , Ratones , Pruebas de Sensibilidad Microbiana , Células 3T3 NIH , Nanopartículas/ultraestructura , Espectroscopía de Fotoelectrones , Aceites de Plantas/química , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA