Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 388(1): 209-217, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37918853

RESUMEN

Acetaminophen (AAP) is metabolized by a variety of pathways such as sulfation, glucuronidation, and fatty acid amide hydrolase-mediated conversion to the active analgesic metabolite AM404. CYP2E1-mediated metabolism to the hepatotoxic reactive metabolite NAPQI (N-acetyl-p-benzoquinone imine) is a minor metabolic pathway that has not been linked to AAP therapeutic benefits yet clearly leads to AAP liver toxicity. N-acetylcysteine (NAC) (an antioxidant) and fomepizole (a CYP2E1 inhibitor) are clinically used for the treatment of AAP toxicity. Mice treated with AAP in combination with fomepizole (plus or minus NAC) were assessed for liver toxicity by histology and serum chemistry. The anticancer activity of AAP with NAC and fomepizole rescue was assessed in vitro and in vivo. Fomepizole with or without NAC completely prevented AAP-induced liver toxicity. In vivo, high-dose AAP with NAC/fomepizole rescue had profound antitumor activity against commonly used 4T1 breast tumor and lewis lung carcinoma lung tumor models, and no liver toxicity was detected. The antitumor efficacy was reduced in immune-compromised NOD-scid IL2Rgammanull mice, suggesting an immune-mediated mechanism of action. In conclusion, using fomepizole-based rescue, we were able to treat mice with 100-fold higher than standard dosing of AAP (650 mg/kg) without any detected liver toxicity and substantial antitumor activity. SIGNIFICANCE STATEMENT: High-dose acetaminophen can be given concurrently with CYP2E1 inhibition to allow for safe dose escalation to levels needed for anticancer activity without detected evidence of toxicity.


Asunto(s)
Acetaminofén , Citocromo P-450 CYP2E1 , Ratones , Animales , Acetaminofén/toxicidad , Citocromo P-450 CYP2E1/metabolismo , Fomepizol , Ratones Endogámicos NOD , Hígado/metabolismo , Acetilcisteína/farmacología
2.
Nat Struct Mol Biol ; 14(12): 1165-72, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18026119

RESUMEN

DNA damage repair is crucial for the maintenance of genome integrity and cancer suppression. We found that loss of the mouse transcription factor YY1 resulted in polyploidy and chromatid aberrations, which are signatures of defects in homologous recombination. Further biochemical analyses identified a YY1 complex comprising components of the evolutionarily conserved INO80 chromatin-remodeling complex. Notably, RNA interference-mediated knockdown of YY1 and INO80 increased cellular sensitivity toward DNA-damaging agents. Functional assays revealed that both YY1 and INO80 are essential in homologous recombination-based DNA repair (HRR), which was further supported by the finding that YY1 preferentially bound a recombination-intermediate structure in vitro. Collectively, these observations reveal a link between YY1 and INO80 and roles for both in HRR, providing new insight into mechanisms that control the cellular response to genotoxic stress.


Asunto(s)
ADN Helicasas/fisiología , Reparación del ADN/fisiología , Inestabilidad Genómica , Recombinación Genética , Factor de Transcripción YY1/fisiología , Animales , Células Cultivadas , Aberraciones Cromosómicas , Daño del ADN , Células HeLa , Humanos , Ratones , Ratones Noqueados , Poliploidía , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA